Buku Guru
MATEMATIKA

SMP/MTs
KELAS
IX
Hak Cipta © 2015 pada Kementerian Pendidikan dan Kebudayaan
Dilindungi Undang-Undang.

Katalog Dalam Terbitan (KDT)

Untuk SMP/MTs Kelas IX

I. Matematika - Studi dan Pengajaran
II. Kementerian Pendidikan dan Kebudayaan

Kontributor Naskah : Subchan, Winarni, Lukman Hanafi, M. Syif'a'ul Mufid, Kistosil Fahim, Wawan Hafid Syaifudin, dan Sari Cahyaningtias

Penelaah : Agung Lukito, Ali Mahmudi, Kusnadi, dan Turmudi.

Penyelia Penerbitan : Pusat Kurikulum dan Perbukuan, Balitbang, Kemdikbud.

Cetakan ke-1, 2015
Disusun dengan huruf Times New Roman, 11 pt.
Kata Pengantar

Matematika adalah bahasa universal dan karenanya kemampuan matematika siswa suatu negara sangat mudah dibandingkan dengan negara lain. Selain itu, matematika juga dipakai sebagai alat ukur untuk menentukan kemajuan pendidikan di suatu negara. Kita mengenal PISA (Program for International Student Assessment) dan TIMSS (The International Mathematics and Science Survey) yang secara berkala mengukur dan membandingkan antara lain kemajuan pendidikan matematika dibebberapa negara.

Walaupun demikian, pembahasan materi selalu didahului dengan pengetahuan konkret yang dijumpai siswa dalam kehidupan sehari-hari. Permasalahan konkret tersebut dipergunakan sebagai jembatan untuk menuju ke dunia matematika abstrak melalui pemanfaatan simbol-simbol matematika yang sesuai melalui pemodelan. Sesampainya pada ranah abstrak, metode-metode matematika diperkenalkan untuk menyelesaikan model permasalahan yang diperoleh dan mengembalikan hasilnya pada ranah konkret.

Jakarta, Januari 2015

Menteri Pendidikan dan Kebudayaan
Kata Pengantar ... iii
Daftar Isi ... iv

<table>
<thead>
<tr>
<th>Bab I</th>
<th>Perpangkatan dan Bentuk Akar</th>
<th>Bab II</th>
<th>Pola, Barisan, dan Deret</th>
<th>Bab III</th>
<th>Perbandingan Bertingkat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>59</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Mengenal Tokoh</td>
<td></td>
<td>Mengenal Tokoh</td>
<td></td>
<td>Mengenal Tokoh</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>61</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>A.</td>
<td>Bilangan Berpangkat</td>
<td>B.</td>
<td>Pola Bilangan</td>
<td>A.</td>
<td>Perbandingan Bertingkat</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Materi Esensi</td>
<td>62</td>
<td>Materi Esensi</td>
<td>142</td>
</tr>
<tr>
<td>Latihan 1.1 Bilangan Berpangkat</td>
<td>Latihan 2.1 Pola Bilangan</td>
<td>Latihan 2.2 Barisan Bilangan</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
</tr>
<tr>
<td>B.</td>
<td>Perkalian pada Perpangkatan</td>
<td>C.</td>
<td>Barisan Bilangan</td>
<td>B.</td>
<td>Materi Esensi</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Materi Esensi</td>
<td>82</td>
<td>Materi Esensi</td>
<td>142</td>
</tr>
<tr>
<td>Latihan 1.2 Perkalian pada Perpangkatan</td>
<td>Latihan 2.3 Deret Bilangan</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>Pembagian pada Perpangkatan</td>
<td>D.</td>
<td>Deret Bilangan</td>
<td>C.</td>
<td>Materi Esensi</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Notasi Ilmiah (Bentuk Baku)</td>
<td>106</td>
<td>Materi Esensi</td>
<td>148</td>
</tr>
<tr>
<td>Latihan 1.3 Pembagian pada Perpangkatan</td>
<td>Latihan 1.4 Membaca dan Menulis Notasi Ilmiah</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td>Notasi Ilmiah (Bentuk Baku)</td>
<td>E.</td>
<td>Pangkat Bilangan Pecahan</td>
<td>D.</td>
<td>Materi Esensi</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Materi Esensi</td>
<td>46</td>
<td>Materi Esensi</td>
<td>148</td>
</tr>
<tr>
<td>Latihan 1.4 Membaca dan Menulis Notasi Ilmiah</td>
<td>Latihan 1.5 Pangkat Bilangan Pecahan</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td>Latihan 3 Perbandingan Bertingkat</td>
<td></td>
</tr>
<tr>
<td>E.</td>
<td>Pangkat Bilangan Pecahan</td>
<td>Proyek 1</td>
<td>53</td>
<td>Proyek 3</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>Uji Kompetensi 1</td>
<td>54</td>
<td>Uji Kompetensi 3</td>
<td>155</td>
</tr>
<tr>
<td>Proyek 1</td>
<td>53</td>
<td>Uji Kompetensi 1</td>
<td>54</td>
<td>Uji Kompetensi 3</td>
<td>155</td>
</tr>
<tr>
<td>Proyek 2</td>
<td>127</td>
<td>Uji Kompetensi 2</td>
<td>128</td>
<td>Uji Kompetensi 3</td>
<td>155</td>
</tr>
</tbody>
</table>
Bab IV Kekongruenan dan Kesebangunan
Mengenal Tokoh... 161
A. Kekongruenan Bangun Datar .. 163
 Materi Esensi .. 164
 Latihan 4.1 Bangun-bangun yang Kongruen 171
B. Kekongruenan Dua Segitiga ... 182
 Materi Esensi .. 191
 Latihan 4.2 Kekongruenan Dua Segitiga 194
C. Kesebangunan Bangun Datar ... 200
 Materi Esensi .. 204
 Latihan 4.3 Kesebangunan Bangun Datar 210
D. Kesebangunan Dua Segitiga ... 215
 Materi Esensi .. 222
 Latihan 4.4 Kesebangunan Dua Segitiga 230
Proyek 4 ... 238
Uji Kompetensi 4 .. 240

Bab V Bangun Ruang Sisi Lengkung
Mengenal Tokoh ... 251
A. Tabung ... 253
 Latihan 5.1 Tabung .. 266
B. Kerucut .. 271
 Latihan 5.2 Kerucut .. 285
C. Bola .. 291
 Latihan 5.3 Bola ... 300
Proyek 5 ... 304
Uji Kompetensi 5 .. 305

Bab VI Statistika
Mengenal Tokoh ... 319
A. Penyajian Data ... 322
 Materi Esensi .. 335
 Latihan 6.1 Penyajian Data .. 339
B. Mean, Median, dan Modus .. 344
 Materi Esensi .. 353
 Latihan 6.2 Mean, Median, Modus 358
Proyek 6 ... 363
Uji Kompetensi 6 .. 364

Bab VII Peluang
Mengenal Tokoh ... 371
A. Ruang Sampel ... 373
 Latihan 7.1 Ruang Sampel .. 374
B. Peluang Teoretik dan Empirik 382
 Latihan 7.2 Peluang Empirik dan Peluang Teoretik 392
Uji Kompetensi 7 .. 397
Bab VIII Bidang Kartesius

Mengenal Tokoh

A. Pengantar Bidang Kartesius
 - Materi Esensi
 - Latihan 8.1 Pengantar Bidang Kartesius

B. Jarak
 - Materi Esensi
 - Latihan 8.2 Jarak

Proyek 7

Uji Kompetensi 8

BAB IX Sistem Persamaan Linear Dua Variabel

Mengenal Tokoh

A. Memodelkan Masalah dalam Persamaan Linear Dua Variabel
 - Materi Esensi
 - Latihan 9.1 Memodelkan Masalah dalam PLDV atau SPLDV

B. Menyelesaikan Model SPLDV dari suatu Permasalahan
 - Materi Esensi
 - Latihan 9.2 Menyelesaikan Masalah yang Berkaitan dengan SPLDV

Proyek 9

Uji Kompetensi 9

BAB X Fungsi Kuadrat

Mengenal Tokoh

A. Grafik Fungsi Kuadrat
 - Materi Esensi
 - Latihan 10.1 Grafik Fungsi Kuadrat

B. Sumbu Simetri dan Nilai Optimum
 - Materi Esensi
 - Latihan 10.2 Menentukan Sumbu Simetri dan Titik Optimum

C. Menentukan Fungsi Kuadrat
 - Materi Esensi
 - Latihan 10.3 Menentukan Fungsi Kuadrat

D. Aplikasi Fungsi Kuadrat
 - Materi Esensi
 - Latihan 10.4 Aplikasi Fungsi Kuadrat

Proyek 10

Uji Kompetensi 10

Contoh Penilaian Sikap

Rubrik Penilaian Sikap

Contoh Penilaian Diri

Contoh Penilaian Partisipasi Siswa

Lembar Partisipasi

Contoh Pengolahan Laporan Pencapaian Kompetensi Matematika

Daftar Pustaka

Glosarium
Tahukah siswa berapakah jarak planet Jupiter ke matahari? Bagaimana siswa dapat menuliskan jarak tersebut dalam bentuk yang lebih sederhana?
Dapatkah siswa melihat seekor bakteri dengan mata telanjang? Mengapa siswa tidak dapat melihatnya tanpa bantuan mikroskop? Berapakah panjang bakteri tersebut? Dapatkah siswa menuliskan dalam bentuk yang lebih sederhana untuk ukuran yang sangat kecil tersebut?
Nah, masalah-masalah tersebut di atas dapat diselesaikan dengan konsep perpangkatan. Konsep ini akan kita pelajari bersama di Bab 1 ini.

Bab 1

Perpangkatan dan Bentuk Akar

Kata Kunci
- Sifat-sifat Pangkat
- Pangkat Negatif
- Pangkat Pecahan
- Bentuk Baku

Kompetensi Dasar
1.1 Menghargai dan menghayati ajaran agama yang dianutnya.
2.1 Menunjukkan sikap logis, kritis, analitik dan kreatif, konsisten dan teliti, bertanggung jawab, responsif, dan tidak mudah menyerah dalam memecahkan masalah sehari-hari, yang merupakan pencerminan sikap positif dalam bermatematika.
3.1 Memahami sifat-sifat bilangan berpangkat dan bentuk akar dalam suatu permasalahan.
3.2 Memahami operasi aljabar yang melibatkan bilangan berpangkat bulat dan bentuk akar.
3.3 Menyelesaikan permasalahan dengan menaksir besaran yang tidak diketahui menggunakan berbagai teknik manipulasi aljabar dan aritmatika.

Pengalaman Belajar
1. Mengidentifikasi, mendeskripsikan, menjelaskan sifat bentuk pangkat berdasarkan hasil pengamatan.
2. Menyelesaikan permasalahan nyata yang berhubungan dengan perpangkatan dan operasi matematika.
3. Menggunakan bentuk baku untuk menuliskan bilangan yang sangat besar dan bilangan yang sangat kecil.
Perpangkatan

- Bilangan Berpangkat
- Pembagian pada Perpangkatan
- Perpangkatan Bilangan Pecahan
 - Perkalian pada Perpangkatan
 - Notasi Ilmiah
Julius Wilhelm Richard Dedekind

Sumber: www.stanford.edu

Hikmah yang bisa diambil
1. Semangat Dedekind untuk merumuskan suatu teori bilangan yang lebih sederhana dan dapat dipahami sekaligus sebagai dasar metodologi konsep-konsep modern pada usia yang relatif muda.
2. Dedekind tetap rendah hati sehingga dia selalu memiliki semangat belajar yang tinggi sekalipun telah menjadi seorang pengajar.
3. Dedekind tidak mudah puas dengan segala penghargaan yang telah dianugerahkan kepadanya, hal ini terbukti dengan keaktifannya dalam hal penelitian khususnya teori aljabar.

Sumber: www.stanford.edu
A. Bilangan Berpangkat

Pertanyaan Penting

1. Memperkenalkan definisi bentuk pangkat.
2. Arahkan siswa agar dapat menuliskan bentuk pangkat dan menulis ulang dalam bentuk perkalian angka untuk mendapatkan nilai bentuk pangkat.

Bagaimana siswa dapat menggunakan bentuk pangkat untuk menyederhanakan penulisan sebuah bilangan?

Kegiatan 1.1 Memahami Konsep Bilangan Berpangkat

1. Arahkan siswa untuk dapat bekerja dalam kelompok dengan kerapian yang baik sehingga dapat melakukan Kegiatan 1.1 dengan tepat.
2. Ajak siswa untuk mendiskusikan hasil kegiatan yang didapatkan dan memahami konsep bilangan berpangkat yang didapatkan.

Kegiatan 1.1 Memahami Konsep Bilangan Berpangkat

Lakukan kegiatan ini dengan langkah-langkah sebagai berikut:

1. Buatlah kelompok yang terdiri atas 5 siswa dan sediakan satu karton berwarna serta sebuah gunting kertas.
2. Lipatlah kertas itu menjadi dua bagian sama besar (yaitu pada sumbu simetri lipatnya).
4. Tumpulkah hasil guntingan kertas sehingga tepat menutupi satu dengan yang lain.

Sumber: Dokumen Kemdikbud
Gambar 1.1 Karton, gunting, dan kertas
5. Berikan kertas tersebut kepada siswa berikutnya, lalu lakukan Langkah 2 sampai 4 secara berulang sampai seluruh siswa di kelompokmu mendapat giliran.

6. Banyak kertas hasil guntingan pada tiap-tiap pengguntingan selanjutnya disebut dengan banyak kertas. Tuliskan banyak kertas pada tabel berikut:

<table>
<thead>
<tr>
<th>Pengguntingan ke-</th>
<th>Banyak kertas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>

Dari Kegiatan 1.1, diperoleh bahwa banyak kertas hasil pengguntingan ke-2 adalah 2 kali lipat dari banyak kertas hasil pengguntingan ke-1. Banyak kertas hasil pengguntingan ke-3 adalah 2 kali lipat dari banyak kertas hasil pengguntingan ke-2, dan seterusnya. Jika siswa melakukan pengguntingan kertas sebanyak \(n \) kali maka banyak kertas hasil pengguntingan adalah

\[
2 \times 2 \times 2 \times \ldots \times 2 = 2^n
\]

2 sebanyak \(n \)

Bentuk di atas merupakan perkalian berulang bilangan 2 yang disebut dengan perpangkatan 2. Secara umum, perkalian berulang dari suatu bilangan \(x \) disebut dengan perpangkatan \(x \).

Kegiatan 1.2 Menggunakan Notasi Pangkat

1. Perkenalkan bentuk perpangkatan, bentuk perkalian dari perpangkatan tersebut serta hasil perkaliannya.

2. Arahkan siswa untuk dapat menganalisis secara mandiri bentuk umum perpangkatan dalam bentuk perkalian, setelah siswa melakukan Kegiatan 1.1.

Setelah memahami konsep perpangkatan pada Kegiatan 1.1, selanjutnya pada kegiatan ini siswa akan menyatakan perpangkatan dalam bentuk perkalian berulang.

Ayo Kita Amati

Amatilah tabel berikut ini.

<table>
<thead>
<tr>
<th>Perpangkatan</th>
<th>Bentuk Perkalian</th>
<th>Hasil Perkalian</th>
</tr>
</thead>
<tbody>
<tr>
<td>5^1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5^2</td>
<td>5×5</td>
<td>25</td>
</tr>
<tr>
<td>5^3</td>
<td>$5 \times 5 \times 5$</td>
<td>125</td>
</tr>
</tbody>
</table>

5^3 merupakan perpangkatan dari 5. Bilangan 5 merupakan basis atau bilangan pokok sedangkan 3 merupakan eksponen atau pangkat.

Ayo Kita Menanya

Buatlah pertanyaan yang berhubungan dengan kata “basis” dan “eksponen”.

Kelas IX SMP/MTs
Setelah mengamati tabel di atas, lengkapilah tabel di bawah ini.

<table>
<thead>
<tr>
<th>Perpangkatan</th>
<th>Bentuk Perkalian</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6^5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7^4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coba jelaskan dengan kata-katamu sendiri apakah yang dimaksud dengan bentuk 8^n untuk n bilangan bulat positif.

Setelah melakukan rangkaian Kegiatan 1.2, apa yang dapat siswa simpulkan berkaitan dengan perpangkatan?

Perpangkatan adalah perkalian berulang dari suatu bilangan yang sama. Bilangan pokok dalam suatu perpangkatan disebut ... dan banyaknya bilangan pokok yang digunakan dalam perkalian berulang disebut ...

Sehingga bentuk umum dari perpangkatan adalah

$$x^n = x \times x \times x \times \ldots \times x \ (n \text{ bilangan bulat positif})$$

x sebanyak n
Kegiatan 1.3
Menyatakan Perpangkatan dalam Bentuk Bilangan Biasa

1. Berikan sedikit penjelasan definisi bilangan berpangkat berdasarkan informasi yang telah didapatkan dari Kegiatan 1.1.
2. Minta siswa untuk menuliskan bilangan berpangkat yang diberikan dalam bentuk angka utuh. Lakukan koreksi setelah siswa menyelesaikan Kegiatan 1.2 untuk memastikan pemahaman tiap-tiap siswa.

Ayo Kita Mencoba

Berikut ini diberikan suatu besaran yang dituliskan dalam perpangkatan. Untuk masing-masing objek tuliskan kembali dalam bentuk biasa (tidak dalam perpangkatan).

a. Kisaran luas total daratan Indonesia adalah 1.8×10^{12} m2 = 1.800.000.000.000 m2

Sumber: http://www.biakkab.go.id
Gambar 1.2 Daratan Indonesia

b. Kisaran panjang tembok besar (great wall) di Tiongkok adalah 2×10^7 m = ...

Sumber: http://inedwi.blogspot.com
Gambar 1.3 Tembok besar di Tiongkok
c. Kisaran diameter bumi adalah 10^8 m = ...

![Bumi](http://hanifweb.wordpress.com)

Gambar 1.4 Bumi

d. Kisaran luas samudera pasifik adalah 10^{13} m2 =

![Samudera Pasifik](http://banyakilmunya.blogspot.com)

Gambar 1.5 Samudera Pasifik

e. Diameter galaksi bima sakti (milky way) adalah $9,5 \times 10^{17}$ =

![Galaksi Bima Sakti](http://www.jpnn.com)

Gambar 1.6 Galaksi Bima Sakti

f. Kisaran diameter matahari adalah 10^8 km =

![Matahari](http://hanifweb.wordpress.com)

Gambar 1.7 Matahari

Ayo Kita Simpulkan

Setelah melakukan kegiatan di atas, dapatkah siswa menjelaskan manfaat dari perpangkatan?
Contoh 1.1
Menuliskan Perpangkatan

Nyatakan perkalian berikut dalam perpangkatan.

a. \((-2) \times (-2) \times (-2)\)
 Karena (-2) dikalikan berulang sebanyak tiga kali maka \((-2) \times (-2) \times (-2)\) merupakan perpangkatan dengan basis (-2) dan pangkat 3.
 Jadi \((-2) \times (-2) \times (-2) = (-2)^3\)

b. \(y \times y \times y \times y \times y \times y\)
 Karena y dikalikan berulang sebanyak enam kali maka \(y \times y \times y \times y \times y \times y\) merupakan perpangkatan dengan basis y dan pangkat 6.
 Jadi \(y \times y \times y \times y \times y \times y = y^6\)

Contoh 1.2
Menghitung Nilai Perpangkatan

1. Nyatakan perpangkatan \((-0,3)^2\) dan \((0,3)^2\) dalam bentuk bilangan biasa.
 Alternatif Penyelesaian:
 \((-0,3)^2 = (-0,3) \times (-0,3)\) Tulis kembali dalam bentuk perkalian berulang
 = 0,09 Sederhanakan
 \((0,3)^2 = (0,3) \times (0,3)\) Tulis kembali dalam bentuk perkalian berulang
 = 0,09 Sederhanakan

2. Nyatakan perpangkatan \((-0,3)^3\) dan \((0,3)^3\) dalam bentuk bilangan biasa.
 Alternatif Penyelesaian:
 \((-0,3)^3 = (-0,3) \times (-0,3) \times (-0,3)\) Tulis dalam bentuk perkalian berulang
 = -0,027 Sederhanakan
 \((0,3)^3 = (0,3) \times (0,3) \times (0,3)\) Tulis dalam bentuk perkalian berulang
 = 0,027 Sederhanakan
3. Nyatakan perpangkatan \((-2)^3\) dan \((-2)^4\) dalam bentuk bilangan biasa.

Alternatif Penyelesaian:

\[\begin{align*}
(-2)^3 &= (-2) \times (-2) \times (-2) & \text{Tulis dalam bentuk perkalian berulang} \\
&= -8 & \text{Sederhanakan}
\end{align*}\]

\[\begin{align*}
(-2)^4 &= (-2) \times (-2) \times (-2) \times (-2) & \text{Tulis dalam bentuk perkalian berulang} \\
&= 16 & \text{Sederhanakan}
\end{align*}\]

Berdasarkan Contoh 1.2, tentukan perbedaan:

1. Perpangkatan dengan basis bilangan positif dan negatif.
2. Perpangkatan dengan eksponen bilangan ganjil dan genap.

Jelaskan jawabannya.

Contoh 1.3

Operasi yang Melibatkan Perpangkatan

1. Minta siswa mengingat kembali perhitungan operasi bilangan di kelas 7.
2. Arahkan siswa agar dapat menggabungkan perhitungan campuran operasi pada bilangan berpangkat.
3. Ajak siswa berdiskusi ketika membahas soal singkat yang telah disediakan setelah contoh.

Contoh 1.3

Operasi yang Melibatkan Perpangkatan

Hitung nilai pada operasi perpangkatan berikut:

a. \(3 + 2 \times 5^2\)

Alternatif Penyelesaian:

\[\begin{align*}
3 + 2 \times 5^2 &= 3 + 2 \times 25 & \text{Hitung hasil tiap-tiap perpangkatan} \\
&= 3 + 50 & \text{Lakukan operasi perkalian} \\
&= 53 & \text{Lakukan operasi penjumlahan}
\end{align*}\]

b. \(4^3 : 8 + 3^2\)

Alternatif Penyelesaian:

\[\begin{align*}
4^3 : 8 + 3^2 &= 64 : 8 + 9 & \text{Hitung hasil tiap-tiap perpangkatan} \\
&= 8 + 9 & \text{Lakukan operasi pembagian} \\
&= 17 & \text{Lakukan operasi pengurangan}
\end{align*}\]
Ayo Kita Tinjau Ulang

2. Ajak siswa untuk dapat menalar bentuk lain dari penerapan perpangkatan pada suatu kejadian.

Ayo Kita Tinjau Ulang

Selesaikan soal-soal di bawah ini.

1. Tentukan hasil dari:
 a. \(9 : 3 \times 4^3\)
 b. \(\left(\frac{1}{8}\right)^3 \times 4^2 + \frac{1}{2}\)
 c. \(-6^6\)

2. Tuliskan ke dalam bentuk perpangkatan.
 a. \(\left(-\frac{2}{3}\right) \times \left(-\frac{2}{3}\right) \times \left(-\frac{2}{3}\right) \times \left(-\frac{2}{3}\right)\)
 b. \(t \times t \times 2 \times 2 \times 2\)

3. Tentukan nilai dari:
 a. \(p^n + (-p)^n\) untuk \(p\) bilangan bulat dan \(n\) bilangan asli genap.
 b. \(p^n + (-p)^n\) untuk \(p\) bilangan bulat dan \(n\) bilangan asli ganjil.

Latihan 1.1 Bilangan Berpangkat

1. Ajak siswa untuk melakukan refleksi terhadap kegiatan pembelajaran.
2. Berikan soal tambahan untuk dikerjakan di rumah (bila diperlukan).

Latihan 1.1 Bilangan Berpangkat

1. Nyatakan perkalian berulang berikut dalam perpangkatan
 a. \((-2) \times (-2) \times (-2)\)
 b. \(\left(-\frac{2}{3}\right) \times \left(-\frac{2}{3}\right) \times \left(-\frac{2}{3}\right) \times \left(-\frac{2}{3}\right)\)
c. \(t \times t \times t \times 2 \times 2 \times 2 \)

d. \(t \times y \times t \times y \times t \)

e. \(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \)

Penyelesaian:

a. \((-2)^3\) d. \(t^3y^2\)

b. \(\left(-\frac{2}{3}\right)^5\) e. \(\left(\frac{1}{4}\right)^5\)

c. \(t^3 \times 2^3\)

2. Nyatakan perpangkatan berikut dalam bentuk perkalian berulang

a. \(3^8\) d. \(\left(-\frac{1}{4}\right)^4\)

b. \((0,83)^4\) e. \(-\left(\frac{1}{4}\right)^4\)

c. \(t^3\) f. \(\left(\frac{1}{2}\right)^5\)

Penyelesaian:

a. \(3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3\)

b. \(0,83 \times 0,83 \times 0,83 \times 0,83\)

c. \(t \times t \times t\)

d. \(\left(-\frac{1}{4}\right) \times \left(-\frac{1}{4}\right) \times \left(-\frac{1}{4}\right) \times \left(-\frac{1}{4}\right)\)

e. \(-\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \right)\)

f. \(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\)

3. Tentukan hasil dari perpangkatan berikut.

a. \(5^4\) d. \((0,02)^2\)

b. \(6^5\) e. \(\left(\frac{1}{3}\right)^3\)

c. \(2^8\) f. \(-\left(\frac{1}{4}\right)^4\)
Penyelesaian:

a. 625 d. 0,0004
b. 7.776 e. \(\frac{1}{27} \)
c. 256 f. \(\frac{1}{256} \)

4. Nyatakan bilangan berikut dalam perpangkatan dengan basis 10

a. 1.000 c. 1.000.000
b. 100.000 d. 10.000.000

Penyelesaian:

a. 10³ c. 10⁶
b. 10⁵ d. 10⁷

5. Nyatakan bilangan berikut dalam perpangkatan dengan basis 2

a. 256 c. 512
b. 64 d. 1.048.576

Penyelesaian:

a. 2⁸ c. 2⁹
b. 2⁶ d. 2²⁰

6. Tuliskan sebagai bentuk perpangkatan dengan basis 5

a. 5 c. 15.625
b. 625 d. 125

Penyelesaian:

a. 5¹ c. 5⁶
b. 5⁴ d. 5³

7. Tentukan hasil dari operasi berikut ini.

a. 5 + 3 × 2⁴ d. \((6^4 - 4^4) : 2 \)
b. \(\frac{1}{2}(6^3 - 4^2) \) e. \(\left(\frac{1}{4} \right)^4 \times \left(\frac{1}{3} \right)^2 \)
c. 8 + 3 × (-3)⁴ f. \(\left(\frac{1}{4} \right)^4 : \left(\frac{1}{3} \right)^2 \)
Penyelesaian:

a. 53
d. 260
b. 100
e. \(\frac{1}{2.304} \)
c. 251
f. \(\frac{1}{2.304} \)

8. Temukan nilai \(x \) pada persamaan matematika di bawah ini.

a. \(7^x = 343 \)
c. \(10^x = 10.000 \)
b. \(2^x = 64 \)
d. \(5^x = 625 \)

Penyelesaian:

a. 3
c. 4
b. 6
d. 4

9. Tim peneliti dari Dinas Kesehatan suatu daerah di Indonesia Timur meneliti suatu wabah yang sedang berkembang di Desa X. Tim peneliti tersebut menemukan fakta bahwa wabah yang berkembang disebabkan oleh virus yang tengah berkembang di Afrika. Dari hasil penelitian didapatkan bahwa virus tersebut dapat berkembang dengan cara membelah diri menjadi 2 virus setiap setengah jam dan menyerang sistem kekebalan tubuh. Berapa banyak virus dalam tubuh manusia setelah 6 jam?

Alternatif Penyelesaian:

a. Berapa banyak amoeba S selama satu hari jika dalam suatu pengamatan terdapat 4 ekor amoeba S?

b. Berapa banyak jumlah Amoeba S mula-mula sehingga dalam 1 jam terdapat minimal 1.000 Amoeba S?

Alternatif Penyelesaian:

Diketahui:
- Waktu pembelahan : 15 menit
- Banyak pembelahan 2 ekor
Ditanya:

a. Banyak amoeba S dalam sehari dengan jumlah amoeba S mula-mula 4 ekor
b. Banyak amoeba S mula-mula sehingga diperoleh jumlah akhir 1.000 ekor dalam waktu satu jam.

Jawaban:

b. Petunjuk: didapatkan lama amoeba S membelah diri adalah 1 jam (4 kali pembelahan diri), agar didapatkan jumlah minimal amoeba S sebanyak 1.000 maka setidaknya harus terdapat 63 ekor amoeba S.

B. Perkalian pada Perpangkatan

1. Berikan siswa beberapa studi kasus untuk perkalian dua buah bilangan berpangkat.
2. Ajak siswa berdiskusi penyelesaian kasus-kasus tersebut, sehingga siswa akan berpikir kritis dan mencari tahu Bagaimana mengalikan dua bilangan berpangkat dengan basis yang sama.

Bagaimana hasil perkalian dari dua perpangkatan dengan basis yang sama?

1. Minta siswa untuk melengkapi tabel Kegiatan 1.4 seperti yang telah dilakukan pada Kegiatan sebelumnya.
2. Arahkan siswa untuk mendapatkan pola perkalian dua bilangan berpangkat sehingga mendapatkan bentuk umum dari perkalian dua bilangan berpangkat.
Kegiatan 1.4
Mengalikan Dua Perpangkatan dengan Basis yang Sama

Ayo Kita Amati

Amatilah tabel di bawah ini. Hasil operasi perkalian pada perpangkatan selanjutnya ditulis dalam perpangkatan.

<table>
<thead>
<tr>
<th>Operasi Perkalian pada Perpangkatan</th>
<th>Operasi Perkalian</th>
<th>Perpangkatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3^2 \times 3^3$</td>
<td>$3 \times 3 \times 3 \times 3 \times 3$</td>
<td>3^5</td>
</tr>
<tr>
<td>$(-3)^2 \times (-3)^3$</td>
<td>$(-3) \times (-3) \times (-3) \times (-3) \times (-3)$</td>
<td>$(-3)^5$</td>
</tr>
<tr>
<td>$y^5 \times y^2$</td>
<td>$y \times y \times y \times y \times y \times y$</td>
<td>y^7</td>
</tr>
</tbody>
</table>

Ayo Kita Mencoba

Lengkapilah tabel di bawah ini.

<table>
<thead>
<tr>
<th>Operasi Perkalian pada Perpangkatan</th>
<th>Operasi Perkalian</th>
<th>Perpangkatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6^3 \times 6^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$4,2^2 \times 4,2^3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$7^4 \times 7^4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\left(\frac{1}{3} \right)^2 \times \left(\frac{1}{3} \right)^5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\left(-\frac{1}{3} \right)^3 \times \left(-\frac{1}{3} \right)^4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5^3 \times 5^3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setelah melengkapi tabel di atas, informasi apakah yang siswa dapatkan mengenai operasi perkalian pada perpangkatan?
Sederhanakan operasi perkalian pada perpangkatan dengan basis \(a \) di bawah ini.

\[a^m \times a^n = a^{m+n} \]

Apakah aturan yang siswa dapatkan berlaku untuk operasi perkalian pada perpangkatan dengan basis yang berbeda? Sebagai contoh, \(5^4 \times 2^3 \). Jelaskan jawabanmu.

Ayo Kita Simpulkan

Bagaimana cara untuk mendapatkan hasil operasi perkalian pada perpangkatan dengan basis yang sama?

Kegiatan 1.5 Memangkatkan Suatu Perpangkatan

1. Minta siswa untuk melengkapi tabel Kegiatan 1.5, dengan menerapkan prinsip perkalian bilangan berpangkat pada kegiatan sebelumnya sehingga didapatkan bentuk pangkat tunggal.
3. Minta siswa mempresentasikan pola yang diperoleh masing-masing kelompok da saling melengkapi hasil yang didapatkan.

Kegiatan 1.5 Memangkatkan Suatu Perpangkatan

Amati tabel berikut ini. Hasil pemangkatan pada suatu perpangkatan selanjutnya ditulis dalam perpangkatan.

<table>
<thead>
<tr>
<th>Pemangkatan Suatu Perpangkatan</th>
<th>Bentuk Perkalian Berulang</th>
<th>Perpangkatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>((4^2)^3)</td>
<td>(4^2 \times 4^2 \times 4^2 = (4 \times 4) \times (4 \times 4) \times (4 \times 4))\n[=4 \times 4 \times 4 \times 4 \times 4 \times 4]</td>
<td>(4^6)</td>
</tr>
</tbody>
</table>
Pemangkatkan Suatu Perpangkatan | Bentuk Perkalian Berulang | Perpangkatan
--- | --- | ---
\((4^3)^2\) | \(4^3 \times 4^3 = (4 \times 4 \times 4) \times (4 \times 4 \times 4)
= 4 \times 4 \times 4 \times 4 \times 4 \times 4\) | \(4^6\)
\((s^4)^2\) | \(s^4 \times s^4 = (s \times s \times s \times s) \times (s \times s \times s \times s)
= s \times s\) | \(s^8\)
\((s^2)^4\) | \(s^2 \times s^2 \times s^2 \times s^2 = (s \times s) \times (s \times s) \times (s \times s) \times (s \times s)
= s \times s\) | \(s^8\)

Dari tabel di atas, perhatikan kembali kolom pertama dan ketiga. Apa yang dapat siswa simpulkan?

Ayo Kita Menanya

Setelah mengamati tabel di atas, buatlah pertanyaan yang berhubungan dengan “memangkatkan suatu perpangkatan”.

Ayo Kita Mencoba

Setelah mengamati tabel di atas, salin dan lengkapilah tabel di bawah ini.

<table>
<thead>
<tr>
<th>Pemangkatkan Suatu Perpangkatan</th>
<th>Bentuk Perkalian Berulang</th>
<th>Perpangkatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>((7^3)^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((7^3)^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((t^3)^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((t^4)^3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Secara umum bentuk \((a^m)^n\) dapat diubah menjadi

\[
(a^m)^n = (a^n)^m = a^{m \times n}
\]

Ayo Kita Simpulkan

Setelah melakukan rangkaian Kegiatan 1.5 tersebut. Apa yang dapat siswa simpulkan berkaitan dengan memangkatkan bentuk perpangkatan?

Bagaimana cara untuk mendapatkan hasil dari perpangkatan yang dipangkatkan?

Kegiatan 1.6 Memangkatkan Suatu Perkalian Bilangan

1. Ingatkan kembali materi perkalian dua bilangan pada materi yang didapatkan di kelas sebelumnya.

Ayo Kita Amati

Amati tabel di bawah ini. Hasil pemangkatan pada perkalian bilangan selanjutnya ditulis dalam perpangkatan

<table>
<thead>
<tr>
<th>Pemangkatan Pada Perkalian Bilangan</th>
<th>Bentuk Perkalian Berulang</th>
<th>Perpangkatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>((2 \times 3)^3)</td>
<td>((2 \times 3) \times (2 \times 3) \times (2 \times 3))</td>
<td>(2^3 \times 3^3)</td>
</tr>
<tr>
<td></td>
<td>(= 2 \times 3 \times 2 \times 3 \times 2 \times 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= 2 \times 2 \times 2 \times 3 \times 3 \times 3)</td>
<td></td>
</tr>
<tr>
<td>Pemangkatan Pada Perkalian Bilangan</td>
<td>Bentuk Perkalian Berulang</td>
<td>Perpangkatan</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(2 \times 5)^4$</td>
<td>$(2 \times 5) \times (2 \times 5) \times (2 \times 5) \times (2 \times 5)$</td>
<td>$2^5 \times 5^5$</td>
</tr>
<tr>
<td></td>
<td>$= 2 \times 5 \times 2 \times 5 \times 2 \times 5 \times 2 \times 5$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$</td>
<td></td>
</tr>
<tr>
<td>$(b \times y)^2$</td>
<td>$(b \times y) \times (b \times y)$</td>
<td>$b^2 \times y^2$</td>
</tr>
<tr>
<td></td>
<td>$= b \times y \times b \times y$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= b \times b \times y \times y$</td>
<td></td>
</tr>
</tbody>
</table>

Ayo Kita Mencoba

Lengkapi tabel di bawah ini.

<table>
<thead>
<tr>
<th>Pemangkatan Pada Perkalian Bilangan</th>
<th>Bentuk Perkalian Berulang</th>
<th>Perpangkatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(7 \times 11)^3$</td>
<td>$(7 \times 11) \times (7 \times 11) \times (7 \times 11)$</td>
<td>$7^3 \times 11^3$</td>
</tr>
<tr>
<td></td>
<td>$= 7 \times 11 \times 7 \times 11 \times 7 \times 11$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 7 \times 7 \times 11 \times 7 \times 11 \times 11$</td>
<td></td>
</tr>
<tr>
<td>$(13 \times 7)^5$</td>
<td>$(13 \times 7) \times (13 \times 7) \times (13 \times 7) \times (13 \times 7) \times (13 \times 7)$</td>
<td>$13^5 \times 7^5$</td>
</tr>
<tr>
<td></td>
<td>$= 13 \times 7 \times 13 \times 7 \times 13 \times 7 \times 13 \times 7 \times 13 \times 7$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 13 \times 13 \times 7 \times 13 \times 7 \times 13 \times 7 \times 13 \times 7$</td>
<td></td>
</tr>
<tr>
<td>$(n \times y)^2$</td>
<td>$(n \times y) \times (n \times y)$</td>
<td>$n^2 \times y^2$</td>
</tr>
<tr>
<td></td>
<td>$= n \times y \times n \times y$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= n \times n \times y \times y$</td>
<td></td>
</tr>
<tr>
<td>$(6 \times t)^3$</td>
<td>$(6 \times t) \times (6 \times t) \times (6 \times t)$</td>
<td>$6^3 \times t^3$</td>
</tr>
<tr>
<td></td>
<td>$= 6 \times t \times 6 \times t \times 6 \times t$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 6 \times 6 \times t \times 6 \times t \times t$</td>
<td></td>
</tr>
<tr>
<td>$(2 \times 7)^4$</td>
<td>$(2 \times 7) \times (2 \times 7) \times (2 \times 7) \times (2 \times 7)$</td>
<td>$2^4 \times 7^4$</td>
</tr>
<tr>
<td></td>
<td>$= 2 \times 7 \times 2 \times 7 \times 2 \times 7 \times 2 \times 7$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 2 \times 2 \times 7 \times 7 \times 7 \times 7$</td>
<td></td>
</tr>
</tbody>
</table>

Secara umum bentuk $(a \times b)^n$ dapat diubah menjadi

$$ (a \times b)^n = a^n \times b^n $$
Setelah melakukan rangkaian Kegiatan 1.6 tersebut, kesimpulan apakah yang siswa dapatkan?

Bagaimana cara untuk mendapatkan hasil pemangkatan pada perkalian bilangan?

Kegiatan 1.7 Permainan Menuliskan Perpangkatan

1. Minta siswa menganalisis bagaimana mendapatkan jumlah koin pada posisi yang diminta tanpa menghitung jumlah koin yang ada di posisi tersebut.
2. Uji jawaban yang diberikan siswa dengan perhitungan kegiatan yang sebenarnya.

Kegiatan 1.7 Permainan Menuliskan Perpangkatan

Lakukan kegiatan ini secara berkelompok yang terdiri atas 4 - 5 siswa, kemudian lakukan langkah-langkah berikut ini.

Ayo Kita Mencoba

1. Siapkan 1 lembar kertas karton, penggaris, pensil, serta uang koin
2. Buatlah tabel seperti gambar di bawah ini

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

3. Tumpuklah koin pada tiap-tiap kotak dengan ketentuan berikut:
Banyaknya koin pada kotak dengan posisi \((x, y)\) adalah \(2^x \times 2^y\)

Contoh: pada kotak dengan posisi \((1, 2)\) banyaknya koin adalah \(2^1 \times 2^2 = 2^3 = 8\) koin

Dari percobaan di atas, jawablah pertanyaan di bawah ini.

a. Berapa banyak koin pada posisi \((3, 2)\)?

b. Pada posisi mana terdapat koin sebanyak 32?

c. Pada posisi mana terdapat koin paling banyak dan berapa banyaknya?

1. Jika tabel yang siswa buat diperluas menjadi berukuran 5 x 5, berapa banyak koin pada posisi \((5, 3)\)?

2. Berapa tinggi tumpukan koin pada posisi \((4, 4)\), jika sebuah koin memiliki tebal 0,2 cm?

Contoh 1.5

Menyederhanakan Operasi Perkalian Pada Perpangkatan

Siswa diminta memahami bagaimana cara menyederhanakan perkalian pada perpangkatan dari Contoh 1.5. Pastikan siswa dapat melakukan operasi perkalian dalam bilangan berpangkat.

Contoh 1.5

Menyederhanakan Operasi Perkalian Pada Perpangkatan

Sederhanakan operasi perkalian pada perpangkatan berikut ini.

a. \(4^3 \times 4^2 = 4^{3+2} = 4^5\) Jumlahkan pangkatnya

b. \(16 \times (-4)^3 = (-4)^2 \times (-4)^3 = (-4)^{2+3} = (-4)^5\) Samakan bentuk basis menjadi (-4)

 Jumlahkan pangkat dari basis (-4)

 Sederhanakan

c. \(m^3 \times m^5 = m^{3+5} = m^8\) Jumlahkan pangkat dari basis \(m\)

 Sederhanakan
Siswa diminta memahami pemangkatan pada suatu perpangkatan di Contoh 1.6. Pastikan siswa dapat melakukan operasi pemangkatan pada suatu perpangkatan.

Contoh 1.6

Memangkatkan Suatu Perpangkatan

Sederhanakan operasi pemangkatan pada perpangkatan berikut ini

a. \((4^3)^2 = 4^3 \times 4^3\)
 Ubah menjadi bentuk perkalian berulang
 = \(4^{3+3}\)
 Jumlahkan pangkatnya
 = \(4^6\)
 Sederhanakan

b. \((x^3)^4 = x^3 \times x^3 \times x^3 \times x^3\)
 Ubah menjadi bentuk perkalian berulang
 = \(x^{3+3+3+3}\)
 Jumlahkan pangkatnya
 = \(x^{12}\)
 Sederhanakan

Contoh 1.7

Mendapatkan Hasil Perpangkatan dari Hasil Kali

Siswa diminta memahami perpangkatan pada perkalian bilangan di Contoh 1.7. Pastikan siswa dapat melakukan operasi perpangkatan pada perkalian bilangan.

Sederhanakan perpangkatan pada perkalian bilangan berikut ini

a. \((4y)^2 = 4y \times 4y\)
 Ubah menjadi bentuk perkalian berulang
 = \((4 \times 4) \times (y \times y)\)
 Kelompokkan basis yang sama
 = \(4^2 \times y^2\)
 Jumlahkan tiap-tiap pangkatnya
 = \(16y^2\)
 Sederhanakan

b. \((wy)^3 = wy \times wy \times wy\)
 Ubah menjadi bentuk pengulangan perkalian
 = \((w \times w \times w) \times (y \times y \times y)\)
 Kelompokkan yang sama
 = \(w^3y^3\)
 Sederhanakan
Ayo Kita Tinjau Ulang

2. Ajak siswa untuk dapat menalar bentuk lain dari penerapan perkalian pada perpangkatan dalam suatu kejadian.

Ayo Kita Tinjau Ulang

1. Sederhanakan bentuk perkalian bilangan berpangkat berikut:
 a. \(7^3 \times 7^2\)
 b. \(\left(\frac{1}{3}\right)^6 \times \left(\frac{1}{9}\right)^4\)
 c. \(t \times t^1\)
2. Sederhanakan bentuk perkalian bilangan berpangkat berikut:
 a. \((9^4)^3\)
 b. \((z^3)^6\)
 c. \(\left(\frac{2}{3}\right)^3\)^2
3. Sederhanakan operasi berikut ini.
 a. \(7^2 \times 7^3\)
 b. \((9^3)^4\)

Bandgingkan jawaban soal nomor 3 (a) dengan soal nomor 1 (a) dan soal nomor 3 (b) dengan soal nomor 2 (a). Apakah jawaban yang siswa dapat bernilai sama? Mengapa demikian? Jelaskan.

Latihan 1.2 Perkalian pada Perpangkatan

1. Ajak siswa untuk melakukan refleksi terhadap kegiatan pembelajaran.
2. Berikan soal tambahan untuk dikerjakan di rumah (bila diperlukan).
1. **Berpikir Kritis.** Nyatakan hasil kali perpangkatan berikut dalam satu bentuk pangkat Jelaskan. Gunakan cara yang lebih mudah

\[4^3 \times 5^6 \]

Penyelesaian:

Alternatif 1.

Dengan mengalikan hasil operasi perpangkatan

\[4^3 \times 5^6 = 64 \times 15.625 = 1.000.000 \]

Alternatif 2.

Dengan menyamakan pangkat tiap-tiap bentuk perpangkatan

\[4^3 \times 5^6 = (2^2)^3 \times 5^6 \]
\[= 2^6 \times 5^6 \]
\[= (2 \times 5)^6 \]
\[= 10^6 \]
\[= 1.000.000 \]

2. Sederhanakan perpangkatan berikut ini.

a. \[4^6 \times 4^3 \]

b. \[(-7)^3 \times (-7)^2 \]

c. \[4(-2,5)^4 \times (-2,5)^3 \]

d. \[(5^2)^3 \]

e. \[5^2 \times \left(\frac{2}{5} \right)^3 \times \left(\frac{2}{5} \right)^5 \]

Penyelesaian:

a. \[4^9 \]

b. \[(-7)^6 \]

c. \[2^2 \times (-2,5)^7 \]

d. \[5^6 \]

e. \[5^2 \times \left(\frac{2}{5} \right)^8 \]

a. \[y^3 \times 2y^2 \times (3y)^2 \]

b. \[b \times 2y^7 \times b^3 \times y^2 \]

c. \[3m^3 \times (mn)^4 \]

d. \[(m^3)^4 \times 4t^3 \]

e. \[(2x^3) \times 3(x^2y^2)^3 \times 5y^4 \]
Penyelesaian:

a. \(18y^{12}\)
 b. \(2b^4y^9\)
 c. \(3m^7n^4\)

4. Tentukan nilai dari perpangkatan berikut ini.

a. \(3^3 \times 2 \times 3^7\)
 b. \((2^2 \times 1^6) + 50\)
 c. \(\frac{1}{2} \times \left(\left(\frac{1}{2}\right)^3\right)^4\)
 d. \(2^4 \times 4 \times 2^3\)

Penyelesaian:

a. \(118.098\)
 b. \(54\)
 c. \(\frac{1}{2} = \frac{1}{32.768}\)
 d. \(512\)

5. Nyatakan perpangkatan berikut dalam bentuk paling sederhana:

a. \(4^3 \times 2^6\)
 b. \((3^2)^3 \times 3^5\)
 c. \(4 \times 3^4 + 5 \times 3^4\)
 d. \((-125) \times (-5)^6\)

Penyelesaian:

a. \(4^6\)
 b. \(3^{15}\)
 c. \(9 \times 3^4 = 3^2 \times 3^4 = 3^6\)
 d. \((-5)^9\)

6. Nyatakan bilangan di bawah ini dalam bentuk yang memuat perpangkatan dengan basis 2.

a. \(64\)
 b. \(20\)
 c. \(100\)
 d. \(\frac{128}{3}\)

Penyelesaian:

a. \(2^6\)
 b. \(5 \times 2^2\)
 c. \(25 \times 2^2\)
 d. \(\frac{1}{3} \times 2^7\)

7. Tentukan nilai \(x\) yang memenuhi persamaan berikut ini.

a. \((3^x)^3 = 81\)
 b. \(\frac{1}{64} \times 4^x \times 2^x = 64\)
Alternatif Penyelesaian:

\[3^x \times 3^x = 3^4\]
\[x^2 = 4\]
\[x_1 = 2 \text{ dan } x_2 = -2\]

b.

\[(2^2)^y \times 2^z = 64 \times 64\]
\[2^{2y} \times 2^z = 2^6 \times 2^6\]
\[2^{3y} = 2^{12}\]

dengan melihat pangkat dari basis 2, maka didapatkan persamaan baru

\[3x = 12\]
\[x = 4\]

a. \[3^6 \times 3^4 = (3 \times 3)^{6+4} = 9^{10}\]

b. \[(t^3)^6 = t^{3 \times 6} = t^{18}\]

Alternatif Penyelesaian:

a. \[3^6 + 4 = 3^{10}\]

b. \[(t^3)^6 = t^{3 \times 6} = t^{18}\]

perpangkatan bentuk perpangkatan adalah dengan mengalikan pangkat masing-masing, sehingga \(t^3 \times t^6 = t^{18}\)

Alternatif Penyelesaian:

Lama perdagangan dalam satu minggu (jam): \((5 \times 12) + 2 \times 18 = 96\) jam
Lama perdagangan dalam satu minggu (menit): \(96 \times 60 = 5.760\) menit
Banyak perputaran uang dalam satu minggu: \(81.000.000 \times 5.760 = 466.560.000.000\)
Jadi banyak perputaran uang dalam satu minggu di pasar tersebut adalah Rp466.560.000.000,00

10. **Tantangan.** Sebuah bola karet dengan diameter 7 cm direndam dalam sebuah bejana berisi minyak tanah selama 3 jam. Jika pertambahan diameter bola karet tersebut 0,002 mm/detik. Berapakah volume bola karet setelah proses perendaman.

![Image of a water tank and a bejana with oil](image)

Sumber: Dokumen Kemdikbud
Gambar 1.8 Bejana berisi minyak tanah dan bola karet

Alternatif Penyelesaian:
Lama perendaman (detik): $3 \times 60 \times 60 = 10.800$ detik
Pertambahan diameter bola karet: $10.800 \times 0,002 = 21,6$ mm = 2,16 cm
Diameter bola karet setelah perendaman: $7 + 2,16 = 9,16$ cm
Volume bola karet setelah perendaman: $\frac{4}{3} \times 3,14 \times (9,16)^3 = 3.217,768$ cm

C. Pembagian pada Perpangkatan

1. Berikan siswa beberapa studi kasus untuk pembagian pada perpangkatan.
2. Ajak siswa berdiskusi penyelesaian kasus-kasus tersebut, sehingga siswa akan berpikir kritis dan mencari tahu bagaimana cara melakukan pembagian pada perpangkatan dan mendapatkan hasilnya.

![Image of two questions](image)

Bagaimana hasil pembagian dari dua perpangkatan yang memiliki basis sama?
Kelas IX SMP/MTs

Kegiatan 1.8 Membagi Dua Bentuk Perpangkatan

1. Minta siswa untuk melengkapi tabel Kegiatan 1.8 setelah siswa melakukan pengamatan mengenai pembagian pada perpangkatan terlebih dahulu.

Ayo Kita Amati

Amati tabel di bawah ini. Hasil pembagian pada suatu perpangkatan selanjutnya ditulis dalam perpangkatan.

<table>
<thead>
<tr>
<th>Pembagian Bentuk Perpangkatan</th>
<th>Pengulangan Bentuk Perkalian</th>
<th>Bentuk Perpangkatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{3^9}{3^4}$</td>
<td>$\frac{3 \times 3 \times 3}{3 \times 3 \times 3}$</td>
<td>3^5</td>
</tr>
<tr>
<td>$\frac{(-2)^6}{(-2)^3}$</td>
<td>$\frac{(-2) \times (-2) \times (-2) \times (-2) \times (-2) \times (-2)}{(-2) \times (-2) \times (-2)}$</td>
<td>$(-2)^3$</td>
</tr>
<tr>
<td>$\frac{6^8}{6^4}$</td>
<td>$\frac{6 \times 6 \times 6 \times 6 \times 6 \times 6 \times 6 \times 6}{6 \times 6 \times 6}$</td>
<td>6^4</td>
</tr>
</tbody>
</table>

Ayo Kita Menanya

Buatlah pertanyaan yang berkaitan dengan “pembagian pada perpangkatan”.
Setelah siswa mengamati tabel di atas, lengkapilah tabel di bawah ini.

<table>
<thead>
<tr>
<th>Pembagian pada Perpangkatan</th>
<th>Bentuk Perkalian Berulang</th>
<th>Perpangkatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{4,2^{10}}{4,2^5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\frac{-7}{7})^5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{2^7}{2^4}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{(-2,5)^4}{(-2,5)^2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{10^9}{10^3}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secara umum bentuk $\frac{a^m}{a^n}$ dapat diubah menjadi

$$\frac{a^m}{a^n} = a^{m-n}$$

Ayo Kita Simpulkan

Bagaimana cara untuk mendapatkan hasil pemangkatan pada perkalian bilangan?
Kegiatan 1.9 Membandingkan Volume

Minta siswa untuk mengingat rumus volume limas segi empat pada materi di kelas sebelumnya. Kemudian siswa diminta membandingkan volume tiap-tiap limas dalam Kegiatan 1.9.

Kegiatan 1.9 Membandingkan Volume

Bentuklah kelompok dan bandingkan volume dari objek yang diberikan di bawah ini.

Ayo Kita Mencoba

Pada gambar di bawah ini, diberikan berbagai ukuran wadah dengan bentuk limas yang diputar 180o terhadap sumbu-y. Hitung volume tiap-tiap limas. Bandingkan volume limas besar terhadap volume limas kecil dengan ukuran panjang alas limas (s) dan tinggi limas (h) diberikan sebagai berikut. Catat hasil yang siswa peroleh dalam tabel.

a. limas kecil \(s = 3, h = 9 \)

b. limas kecil \(s = 4, h = 8 \)

limas besar \(s = 3^2, h = 18 \)

limas besar \(s = 4^2, h = 12 \)
c. limas kecil \(s = 2, h = 5 \)

\[\text{Volume limas kecil} = \frac{1}{3} s^2 h = \frac{1}{3} \times 2^2 \times 9 \]

\[\text{Volume limas besar} = \frac{1}{3} (3^2)^2 h = \frac{1}{3} \times 3^2 	imes 18 \]

\[\frac{\text{Volume limas besar}}{\text{Volume limas kecil}} = \frac{(3^2)^2 	imes 2 \times 3^2}{3^2 \times 3^2} = 2 \times 3^2 \]

d. limas kecil \(s = 10, h = 15 \)

\[\text{Volume limas kecil} = \frac{1}{3} s^2 h = \frac{1}{3} \times 10^2 \times 15 \]

\[\text{Volume limas besar} = \frac{1}{3} (3^2)^2 h = \frac{1}{3} \times 3^2 	imes 200 \]

\[\frac{\text{Volume limas besar}}{\text{Volume limas kecil}} \]
Diskusi

1. Bagaimana siswa dapat membagi dua perpangkatan dengan basis yang sama?
2. Berikan dua contoh sebagai pendukung jawabannya!

Contoh 1.8 Pembagian pada Perpangkatan

Ajak siswa lebih memahami konsep pembagian dua bilangan berpangkat dari Contoh 1.8. Selanjutnya uji pemahaman siswa melalui permasalahan singkat dari Tinjau Ulang dan lakukandiskusi terbuka dengan siswa di ruang kelas.

Contoh 1.8 Pembagian pada Perpangkatan

1. \(\frac{4^3}{4^2} = 4^{3-2} \)
 - Kurangkan pangkat dari basis 4
 - \(= 4 \)
 - Sederhanakan

2. \(\frac{(-4)^7}{(-4)^2} = (-4)^{7-2} \)
 - Kurangkan pangkat dari basis (-4)
 - \(= (-4)^5 \)
 - Sederhanakan

3. \(\frac{x^5}{x^2} = x^{5-2} \)
 - Kurangkan pangkat dari basis \(x \)
 - \(= x^3 \)
 - Sederhanakan

Contoh 1.9 Menyederhanakan Operasi pada Perpangkatan

Setelah siswa memahami pembagian dua bilangan berpangkat. Arahkan siswa untuk memahami penyelesaiannya dari operasi bilangan berpangkat dari contoh dan mendapatkan nilai operasi pembagian bilangan berpangkat. Selanjutnya untuk memantapkan pemahaman siswa, lakukan diskusi terbuka untuk membahas permasalahan singkat dari Tinjau Ulang agar siswa lebih memahami penyelesaian ekspresi bilangan berpangkat.

Contoh 1.9 Menyederhanakan Operasi pada Perpangkatan

Sederhanakan bentuk \(\frac{4^3 \times 4^8}{4^5} \). Tuliskan jawaban dalam bentuk bilangan berpangkat
\[
\frac{4^3 \times 4^8}{4^1} = \frac{4^{3+8}}{4^1} = 4^{11} = 4^{11-5} = 4^6
\]

Jumlahkan pangkat dari pembilang

Sederhanakan

Kurangkan pangkat dari basis 4

Sederhanakan

Contoh 1.10

Operasi Perkalian dan Pembagian pada Perpangkatan

Sederhanakan bentuk \(\frac{b^4}{b^2} \times \frac{b^6}{b^3}\). Tuliskan jawaban dalam bentuk bilangan berpangkat

\[
\frac{b^4}{b^2} \times \frac{b^6}{b^3} = b^{4-2} \times b^{6-3} = b^2 \times b^3 = b^5
\]

Kurangkan pangkat

Sederhanakan

Jumlahkan pangkat

Sederhanakan

Contoh 1.11

Penerapan Pembagian pada Perpangkatan dalam Kehidupan Nyata

Pada Contoh 1.11, arahkan siswa untuk dapat memahami penerapan pembagian bilangan berpangkat dalam kehidupan nyata. Kemampuan dasar siswa dalam mengoperasikan pembagian bilangan berpangkat dibutuhkan dalam menyelesaikan permasalahan yang ada. Selanjutnya ajak siswa berdiskusi penerapan lain dalam kehidupan nyata dari pembagian bilangan berpangkat.

Contoh 1.11

Penerapan Pembagian pada Perpangkatan dalam Kehidupan Nyata

Berdasarkan data BPS tahun 2010 (www.bps.go.id) jumlah penduduk pulau Jawa mencapai 130 juta jiwa (melalui proses pembulatan). Sedangkan luas pulau Jawa 130 \(\times 10^3\) km\(^2\). Berapakah kepadatan penduduk pulau Jawa tahun 2010?

Sumber: www. http://geospasial.bnpb.go.id

Gambar 1.9 Kepadatan penduduk Jawa
Jawaban:

Luas area = $1,3 \times 10^6$ km2

Kepadatan penduduk = $\frac{\text{Jumlah penduduk}}{\text{Luas area}}$

\[
= \frac{1,3 \times 10^8}{1,3 \times 10^5}
\]

Subtitusikan populasi penduduk dan luas area

\[
= \frac{1,3 \times 10^8}{1,3 \times 10^5}
\]

Tulis kembali dalam bentuk pembagian terpisah

\[
= 1 \times 10^{8-5}
\]

Kurangkan pangkat

\[
= 1 \times 10^3
\]

Sederhanakan

Jadi kepadatan penduduk Pulau Jawa tahun 2010 adalah 1.000 jiwa/km2

Ayo Kita Tinjau Ulang

1. Sederhanakan bentuk pembagian bilangan berpangkat berikut:

 a. $\frac{8^4}{8^3}$

 b. $\frac{2,3^7}{2,3^3}$

 c. $\left(-8\right)^9 \div \left(-8\right)^3$

2. Sederhanakan bentuk pembagian bilangan berpangkat berikut:

 a. $\frac{8^4 \times 8^2}{8^3}$

 b. $\frac{(-2,3)^{10}}{(-2,3)^3 \times (-2,3)^2}$

 c. $\frac{b^9}{b^3 \times b^7}$

3. Pada Contoh 1.11, jika populasi penduduk pulau Jawa bertambah 1% setiap 10 tahun, hitung kepadatan penduduk pulau Jawa pada tahun 2020 dan 2030.

Latihan 1.3 Pembagian pada Perpangkatan

1. Ajak siswa untuk melakukan refleksi terhadap kegiatan pembelajaran.
2. Berikan soal tambahan untuk dikerjakan di rumah (bila diperlukan).
1. **Berpikir Kritis.** Diberikan persamaan \(\frac{5^m}{5^n} = 5^4\)

a. Tentukan dua bilangan \(m\) dan \(n\) yang bernilai antara 1 sampai dengan 9 sehingga dapat memenuhi persamaan di atas.

 Alternatif Penyelesaian:

 \[
 5^m - n = 5^4
 \]

 \[
 m - n = 4
 \]

 a. Pasangan bilangan yang mungkin adalah 5 dan 1, 6 dan 2, 7 dan 3, 8 dan 4, serta 9 dan 5.

 b. Terdapat 5 pasangan bilangan yang merupakan penyelesaian persamaan tersebut.

2. Sederhanakan pembagian pada perpangkatan berikut ini. Tuliskan jawabannya dalam bentuk bilangan berpangkat

 a. \(\frac{(-4)^5}{(-4)^2}\)

 b. \(\frac{(-4)^6}{(-4)^2}\)

 c. \(\frac{0,3^7}{0,3^3}\)

 d. \(\left(\frac{2}{5}\right)^9\)

 Penyelesaian:

 a. \((-4)^3\)

 b. \((-4)^4\)

 c. \((0,3)^4\)

 d. \(\left(\frac{2}{5}\right)^4\)

 a. \(\frac{-y^5}{-y^2}\)

 b. \(\left(\frac{1}{t}\right)^7\)

 c. \(\frac{3m^7}{m^3}\)

 d. \(\frac{42y^4}{12y^5}\)
Penyelesaian:

a. \((-y)^3\) c. \(3m^4\)

b. \(\left(\frac{1}{t}\right)^4\) d. \(\frac{7}{2}m^3\)

a. \(\frac{3^7 \times 3^2}{3^3}\) c. \(\left(\frac{1}{t}\right)^7 \times \left(\frac{1}{t}\right)^3\)

b. \(\frac{5^5}{5^2 \times 5^3}\) d. \(\frac{3w^4}{w^2} \times 5w^3\)

Penyelesaian:

a. \(3^6\) c. \(\left(\frac{1}{t}\right)^5\)

b. 1 d. \(15 \times w^6\)

5. Sederhanakan bentuk di bawah ini.

a. \(\frac{0,2^4 \times 0,2^2}{0,2^3}\) d. \(\frac{3 \times 5^4}{5^3} - 15\)

b. \(-5^5\) \(\frac{-5^5}{(-5)^4 \times (-5)^3}\) e. \(\frac{4^5}{4^4} - \frac{2^4}{2^3} \times 6\)

c. \(12 + \frac{4^7}{4^6}\)

Penyelesaian:

a. 0,2 d. \(3 \times 5 - 15 = 0\)

b. -5 e. \(4 - 2 \times 6 = 4 - 12 = -8\)

c. \(12 + 4 = 16\)

6. Sederhanakan bentuk di bawah ini.

a. \(\frac{5}{8}\) d. \(\frac{50}{625}\)

b. \(\frac{32}{20}\) e. \(\frac{49}{686}\)

c. \(\frac{45}{6}\)
Penyelesaian:

a. \(\frac{5}{8} \)

b. \(\frac{8}{5} \)

c. \(\frac{15}{2} \)

d. \(\frac{2}{25} \)

e. \(\frac{1}{14} \)

7. Tuliskan kembali dalam 3 bentuk pembagian perpangkatan:

a. \(2^5 \)

b. \(p^3 \)

Alternatif Penyelesaian:

Siswa diminta membuat 3 buah operasi pembagian dari bentuk perpangkatan sehingga mendapatkan hasil pada nomor 7 (a) dan 7 (b).

a. \(2^5 = \frac{2^{10}}{2^5} = \frac{2^6}{2^2} = \frac{2^7}{2^5} \)
b. \(p^3 = \frac{p^6}{p^3} = \frac{p^5}{p^2} = \frac{p^{10}}{p^7} \)

8. Dapatkan nilai \(n \) dari pembagian bilangan berpangkat di bawah ini:

a. \(\frac{s^2}{s^3} \times \frac{s^9}{s^5} = s^n \)

b. \(\frac{3^6}{3^2} = n \times 9 \)

Alternatif Penyelesaian:

a. \(\frac{s^{11}}{s^7} = s^4 = s^n \) maka \(n = 4 \)

b. \(n = \frac{3^6 \times 1}{3^2 \times 9} = \frac{3^6}{3^2 \times 3^2} = \frac{3^6}{3^4} = 3^2 \)

9. Analisa Kesalahan. Jelaskan dan perbaiki kesalahan dalam menyederhanakan ekspresi berikut

\[\frac{7^{13}}{7^5} = 7^{\frac{13}{5}} = 7^8 \]

Alternatif Penyelesaian:

\[\frac{7^{13}}{7^5} = 7^{13-5} = 7^8 \]
10. **Tantangan.** Intensitas bunyi percakapan manusia adalah 10^6 lebih besar dari intensitas suara manusia berbisik. Sedangkan intensitas bunyi pesawat lepas landas adalah 10^{14} lebih besar dari pada suara bisikan manusia yang dapat terdengar. Berapa kali intensitas bunyi pesawat lepas landas dibandingkan dengan bunyi percakapan manusia?

Alternatif Penyelesaian:
Intensitas bunyi percakapan: 10^6 kali lebih besar dari bisikan
Intensitas bunyi pesawat lepas landas 10^{14} lebih besar dari bisikan
Intensitas bunyi lepas landas pesawat dengan percakapan manusia

$$\frac{10^{14}}{10^6} = 10^8$$

D. Notasi Ilmiah (Bentuk Baku)

Pertanyaan Penting
Ajak siswa menganalisis dengan memberikan beberapa kasus berupa bilangan yang memiliki digit yang sangat banyak sehingga menyulitkan siswa untuk menulisannya secara utuh. Sehingga dibutuhkan cara untuk menulisannya secara lebih singkat.

Pertanyaan Penting
Bagaimana membaca dan menulis notasi ilmiah?

Kegiatan 1.10
Menggunakan Kalkulator

Ayo Kita Amati
Pada kegiatan ini, siswa diminta melakukan pengamatan secara berkelompok. Lakukan langkah kerja seperti yang telah disajikan.
1. Dengan menggunakan kalkulator saintifik, kalikan dua bilangan besar. Sebagai contoh

\[2.000.000.000 \times 3.000.000.000 \]

Berapa nilai yang muncul di layar kalkulator?

2. Tentukan hasil perkalian 2.000.000.000 dengan 3.000.000.000 tanpa menggunakan kalkulator. Berapa hasilnya?

3. Apa yang dapat siswa simpulkan dari hasil (1) dan (2)?

4. Periksa kembali penjelasanmu dengan menggunakan hasil kali bilangan besar yang lain.

Setelah melakukan percobaan di atas, buatlah pertanyaan yang berkaitan dengan pola penulisan perpangkatan yang ditunjukkan kalkulator.

1. Lakukan percobaan dengan mengalikan dua bilangan yang sangat kecil, sebagai contoh 0,000004 dikalikan dengan 0,0000002, bagaimana hasil yang ditunjukkan oleh kalkulatormu?

3. Lakukan percobaan untuk menentukan angka maksimum yang dapat ditampilkan di layar kalkulator. Sebagai contoh, ketika siswa mengalikan 1.000 dengan 1.000 maka kalkulatormu akan menunjukkan 1.000.000.
Diskusi

1. Bagaimana siswa dapat menuliskan sebuah bilangan dalam bentuk notasi ilmiah?

Ayo Kita Simpulkan

Setelah melakukan rangkaian Kegiatan 1.10 tersebut, kesimpulan apakah yang dapat siswa tarik berkenaan dengan notasi ilmiah (bentuk baku) suatu bilangan?

Sebuah bilangan dikatakan tertulis dalam bentuk notasi ilmiah (baku) ketika

- Faktor pengali berada di antara \(\leq t \leq \ldots \)
- Basis dari bentuk perpangkatan 10 memiliki pangkat ...

Faktor pengali lebih besar dari 1 dan kurang dari 10

\[2,3 \times 10^3 \]

Pemangkatan 10 harus memiliki pangkat bilangan bulat

Bilangan lebih besar atau sama dengan 10

Gunakan sebuah pangkat positif ketika siswa memindahkan titik desimal kekiri.

Bilangan antara 0 dan 1

Gunakan sebuah pangkat negatif ketika siswa memindahkan titik desimal kekanan.

Contoh 1.12 Menulis Notasi Ilmiah dalam Bentuk Biasa

Nyatakan bentuk ilmiah berikut ini menjadi bentuk biasa.

a. \(2,16 \times 10^5 = 2,16 \times 100.000 \) \(= 216.000 \) Dapatkan hasil dari perpangkatan 5 dari basis 10

Lakukan operasi perkalian dengan memindahkan tanda desimal sebanyak 5 tempat ke kanan

b. \(0,16 \times 10^{-3} = 0,16 \times 0,001 \) \(= 0,00016 \) Dapatkan hasil dari perpangkatan (-3) dari basis 10

Lakukan perkalian dengan memindahkan tanda desimal sebanyak 3 tempat ke kiri
Tuliskan bentuk baku dari:

a. 12×10^6
b. 123×10^{-7}

Latihan 1.4 Membaca dan Menulis Notasi Ilmiah

1. Ajak siswa untuk melakukan refleksi terhadap kegiatan pembelajaran.
2. Berikan soal tambahan untuk dikerjakan di rumah (bila diperlukan).

Latihan 1.4 Membaca dan Menulis Notasi Ilmiah

1. **Berpiikir Kritis.** Tebal sebuah biskuit adalah 0,1 cm sedangkan dalam satu kemasan 600 gr berisi 100 buah biskuit. Berapakah panjang biskuit yang dapat disusun memanjang dalam satu kardus yang berisi 25 kemasan 600 gr. Tuliskan jawabannya dalam bentuk biasa kemudian sederhanakan dalam bentuk baku.

 Alternatif Penyelesaian:

 Dicari panjang total biskuit untuk kemasan 600 gr = $0,1 \times 100 = 10$ cm
 Selanjutnya dihitung total panjang biskuit dalam 1 kardus yang terdapat $25 \times 10 = 250$ cm.
 Jawaban: 250 cm

2. Tentukan jawaban siswa dalam bentuk baku. Beri penjelasan singkat bagaimana siswa mendapatkan jawaban tersebut.

 a. $10,5 \times 10^3$

 b. $1,5 \times 10^5$

 c. $7,125 \times 10^{-16}$

 Alternatif Penyelesaian:

 a. $1,05 \times 10^4$

 b. $1,5 \times 10^5$

 c. $7,125 \times 10^{-13}$
3. Tuliskan kembali dalam bentuk biasa
 a. \(7 \times 10^3 \)
 b. \(2,7 \times 10^{-12} \)
 c. \(3,25 \times 10^5 \)
 d. \(9,95 \times 10^{15} \)
 e. \(3,1 \times 10^3 \)

Penyelesaian:
 a. 7.000
 b. 0,000000000027
 c. 325.000
 d. 9.950.000.000.000.000
 e. 3.100

4. Tuliskan dalam bentuk baku
 a. \(0,00000056 \)
 b. \(120.000.000.000 \)
 c. \(1.000.000.000.000.000 \)
 d. \(880 \)
 e. \(0,000123 \)

Penyelesaian:
 a. \(5,6 \times 10^{-7} \)
 b. \(1,2 \times 10^{11} \)
 c. \(10^{15} \)
 d. \(8,8 \times 10^2 \)
 e. \(1,23 \times 10^{-4} \)

5. Sederhanakan dan tuliskan jawabanmu dalam bentuk baku
 a. \((5 \times 10^2) \times (3 \times 10^2) \)
 b. \((7,2 \times 10^{-3}) \times (4 \times 10^5) \)
 c. \((5,25 \times 10^6) \times (10^{-12}) \)
 d. \(\frac{(1,25 \times 10^{16})}{5 \times 10^6} \)
 e. \(\frac{1,6 \times 10^3}{2 \times 10^4} \)

Penyelesaian:
 a. \(1,5 \times 10^5 \)
 b. \(2,88 \times 10^3 \)
 c. \(5,25 \times 10^{-6} \)
 d. \(2,5 \times 10^8 \)
 e. \(8 \times 10^{-8} \)

 a. \(125.000.000 = 12,5 \times 10^7 \)
 b. \(0,0000055 = 5,5 \times 10^6 \)
 c. \(1,3 \times 10^{-4} = 13.000 \)

Penyelesaian:
 a. \(125.000.000 = 1,25 \times 10^8 \)
b. \(0,0000055 = 5,5 \times 10^{-6}\)

c. \(1,3 \times 10^{-4} = 0,00013\)

7. Massa planet Jupiter adalah \(1,9 \times 10^8\) kg, sedangkan berat planet Bumi adalah 30% dari Jupiter. Berapakah massa planet Bumi? Tuliskan jawabanmu dalam bentuk baku atau notasi ilmiah.

Alternatif Penyelesaian:

Massa planet bumi \(\frac{30}{100} \times 1,9 \times 10^8 = 5,7 \times 10^7\)

8. Massa Bumi adalah \(5,972,190,000,000,000,000,000\) kg. Tuliskan dalam bentuk baku.

Alternatif Penyelesaian:

\(5,972,190,000,000,000,000,000 = 5,97219 \times 10^{21}\)

9. **Tantangan.** Dinda membeli flashdisk baru seharga Rp85.000,00 dengan kapasitas 16 GB. Berapa byte kapasitas flashdisk Dinda yang bisa digunakan, jika dalam suatu flash disk kapasitas yang dapat digunakan adalah 95% dari kapasitas totalnya.

Alternatif Penyelesaian:

Diketahui 16 GB = \(16 \times 10^9\) B

\[
16 \text{ GB} \times \frac{95}{100} = 16 \times 10^9 \text{ B} \times \frac{95}{100} = 16 \times 95 \times 10^7 \text{ B}
\]

\[
= 1,520 \times 10^7 \text{ B} = 1,52 \times 10^{10} \text{ Byte}
\]

Penyelesaian:

\[
\frac{85.000}{1,52 \times 10^{10}} = 5,592 \times 10^{-6}
\]

Jadi harga memori tiap bytenya adalah Rp5,592 \(\times 10^{-6}\)
E. Pangkat Bilangan Pecahan

Bagaimana siswa dapat menggunakan bilangan berpangkat pecahan untuk menuliskan sebuah angka?

Kegiatan 1.11 Pangkat Bilangan Pecahan

\[
c = \sqrt{a^2 + b^2}
\]

Didapatkan persamaan umum untuk mencari panjang sisi miring segitiga siku-siku

Kegiatan 1.12 Mendapatkan Sisi Kubus

Setelah siswa mengamati proses untuk mendapatkan sisi miring pada segitiga siku-siku dengan menerapkan aturan pythagoras pada kegiatan di atas. Susunlah pertanyaan yang menyatakan hubungan antara pangkat kuadrat dan akar pangkat dua.

Ayo Kita Mencoba

Berikut ini disajikan beberapa macam kubus dengan ukuran yang berbeda, dengan menggunakan definisi yang didapatkan di Kegiatan 1.11. Tentukan masing-masing luas permukaan dan sisi kubus yang ada.
<table>
<thead>
<tr>
<th>Volume</th>
<th>Panjang sisi</th>
<th>Luas Permukaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>((s \times s \times s = s^3))</td>
<td>((s))</td>
<td>((6 \times s \times s))</td>
</tr>
<tr>
<td>64 cm³</td>
<td>Metode 1:</td>
<td>6 \times 4 \times 4 = 96</td>
</tr>
<tr>
<td></td>
<td>(= \frac{3}{4} \times 4 \times 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= \frac{3}{4} \times \sqrt[3]{4} \times \sqrt[3]{4})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= \left(\frac{\sqrt[3]{4}}{4}\right)^3 = \left(\frac{1}{4}\right)^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= \frac{3}{4^3} = 4^1 = 4)</td>
<td></td>
</tr>
<tr>
<td>125 cm³</td>
<td>Metode 2:</td>
<td>6 \times 5 \times 5 = 150</td>
</tr>
<tr>
<td></td>
<td>(= \frac{3}{5} \times 5 \times 5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= \frac{3}{5} \times \sqrt[3]{5} \times \sqrt[3]{5})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= \left(\frac{\sqrt[3]{5}}{5}\right)^3 = \left(\frac{1}{5}\right)^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= \frac{3}{5^3} = 5^1 = 5)</td>
<td></td>
</tr>
</tbody>
</table>
Metode 1:
\[
\sqrt[3]{9 \times 9} \\
\sqrt[3]{9 \times 9 \times \sqrt[3]{9}} \\
\left(\sqrt[3]{9}\right)^3 = \left(9^{\frac{1}{3}}\right)^3 \\
= 9^{\frac{1}{3} \times 3} = 9^1 = 9
\]

Metode 2:
\[
\sqrt[3]{9 \times 9} \\
= \sqrt[3]{9^3} = \sqrt[3]{3^6} \\
= \left(3^6\right)^{\frac{1}{3}} = \frac{6}{3^3} \\
= 3^3 = 9
\]

Diskusi dan Berbagi

Informasi apakah yang siswa dapatkan setelah melengkapi tabel di atas? Dapatkah siswa mendapatkan hubungan antara bentuk perpangkatan dengan bentuk akar? Diskusikan hasil yang siswa dapatkan dengan teman siswa.

Ayo Kita Simpulkan

Setelah melakukan rangkaian Kegiatan 1.11 dan Kegiatan 1.12 tersebut. Kesimpulan apakah yang dapat siswa tarik berkarena dengan pangkat pecahan pada bentuk perpangkatan?

Dari kegiatan-kegiatan yang telah siswa lakukan, maka didapatkan:

- Jika mempertimbangkan \(a^m \) sebagai \(\left(a^m\right)^{\frac{1}{n}} \), selanjutnya \(a^{\frac{m}{n}} = \sqrt[n]{a^m} \).
- Jika mempertimbangkan \(a^m \) sebagai \(\left(\frac{1}{a^m}\right)^{\frac{-1}{m}} \), selanjutnya \(a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m \), dengan \(a > 0 \), dan \(m, n \) bilangan bulat positif.
Contoh 1.13

Menghitung Bentuk Pangkat Pecahan

Hitung bentuk pangkat pecahan di bawah ini:

a. \(\frac{1}{9^2} \)

b. \(\frac{2}{8^3} \)

Alternatif Penyelesaian:

a. \(\frac{1}{9^2} \)

Metode 1

\[9^\frac{1}{2} = \sqrt{9} \]

\[= 3 \]

Bentuk dalam bentuk akar

Hitung hasil akarnya

Metode 2

\[9^\frac{1}{2} = \left(3^2\right)^\frac{1}{3} \]

\[= 3^{2\cdot\frac{1}{3}} \]

Kalikan pangkat

\[= 3^1 \]

Hitung hasil pangkatnya

\[= 3 \]

Alternatif Penyelesaian:

b. \(\frac{2}{8^3} \)

Metode 1

\[8^\frac{2}{3} = \left(\frac{1}{8}\right)^2 \]

Bentuk dalam bentuk perkalian pangkat

\[= \left(\sqrt[3]{8}\right)^2 \]

Bentuk ke dalam akar pangkat tiga

\[= 2^2 = 4 \]

Hitung hasil pangkatnya

Metode 2

\[8^\frac{2}{3} = \left(8^2\right)^\frac{1}{3} \]

Bentuk dalam bentuk kuadrat

\[= 64^{\frac{1}{3}} \]

Kalikan pangkat

\[= \sqrt[3]{64} = 4 \]

Hitung hasil akarnya

Metode 3

\[8^\frac{2}{3} = \left(2^3\right)^\frac{2}{3} \]

Bentuk dalam bentuk perkalian pangkat

\[= 2^{3\cdot\frac{2}{3}} \]

Bentuk ke dalam akar pangkat tiga

\[= 2^2 = 4 \]

Hitung hasil pangkatnya
Ayo Kita Tinjau Ulang

1. Tuliskan bentuk baku dari:
 a. \(64^{\frac{1}{2}}\)
 b. \(27^{\frac{2}{3}}\)

2. Tuliskan bentuk perpangkatan pecahan dari:
 a. \(\sqrt{25}\)
 b. \(\sqrt{125}\)

Latihan 1.5 Pangkat Bilangan Pecahan

1. Berpikir Kritis. Tono dapat mengisi penuh sebuah keranjang buah waktu 12 menit. Jika Tono mengisi keranjang tersebut dengan kecepatan dua kali dari biasanya. Berapa menitakah waktu yang dibutuhkan Tono untuk mengisi penuh keranjang buah tersebut?

\[x^{\frac{2}{3}} = \frac{1}{\sqrt[3]{x^2}}\]

Penyelesaian: Seharusnya \(x^{\frac{2}{3}} = \frac{1}{\sqrt[3]{x^2}}\) atau \(x^{\frac{3}{2}} = \frac{1}{\sqrt{x^3}}\)

3. Nyatakan perpangkatandan bawah ini dalam bentuk lain
 a. \(\frac{1}{3}^3\)
 b. \((\frac{1}{5})^{\frac{1}{2}}\)
 c. \((\frac{27}{8})^{\frac{1}{3}}\)

Penyelesaian:
 a. \(3^{-\frac{1}{3}} = \sqrt[3]{\frac{1}{3}}\)
 b. \(\left(\frac{1}{5}\right)^{\frac{1}{2}} = \sqrt{\frac{1}{5}}\)
 c. \(\left(\frac{27}{8}\right)^{\frac{1}{3}} = \frac{3}{2}\)

4. Nyatakan perpangkatandan bawah ini dalam bentuk lain
 a. \(\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}\)
 b. \(\sqrt{625}\)

Penyelesaian:
 a. \(\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \left(\frac{1}{6}\right)^3 = 6^{-1} = \frac{1}{6}\)
b. \[\sqrt{625} = \sqrt{25^2} = (25^2)^{\frac{1}{2}} = 25^{\frac{1}{2}} = 25 \]

5. Sederhanakan bentuk perpangkatan di bawah ini
 a. \[3y^4 \times 2y^6 \]
 b. \[m^2 : 2m^{\frac{1}{2}} \]

 Penyelesaian:
 a. \[3y^4 \times 2y^6 = 6y^{10} \]
 b. \[m^2 : 2m^{\frac{1}{2}} = \frac{m^2}{2} = \sqrt{m^4} \]

6. Hitung operasi bilangan berpangkat di bawah ini:
 a. \[\frac{1}{4^3} \times 3^2 + 4 \]
 b. \[\frac{5^2 \times 3^3}{5^2} \]
 c. \[\sqrt{1,96 \times 10^{24}} \]

 Penyelesaian:
 a. \[\frac{1}{4^3} \times 3^2 + 4 = 2 \times 9 + 4 = 22 \]
 b. \[\frac{5^2 \times 3^3}{5^2} = \frac{5^3 \times 3^3}{5^3} = 5^3 \times \frac{3^3}{5^3} = \frac{3^3 \times 3^3}{5^3} = \frac{10}{5^3} = \sqrt[3]{10} \]
 c. \[\sqrt{1,96 \times 10^{24}} = \sqrt{(1,4)^2 \times 10^{24}} = 1,4 \times 10^{12} \]

 Penyelesaian:
 Panjang bendera = \[2 \times (6 + 8) + 2 \times \sqrt{6^2 + 8^2} = 2 \times 14 + 2 \times 10 = 48 \text{ m} \]

8. Sederhanakan bentuk operasi perpangkatan berikut ini, tuliskan jawabannya dalam bentuk akar:
 a. \[\frac{xyz}{\sqrt[3]{x^3y^3z^3}} \]
 b. \[ab^3 \times a^2b^2 \]

 Penyelesaian:
 a. \[\frac{xyz}{\sqrt[3]{x^3y^3z^3}} = xyz \times x^{-\frac{2}{3}} \cdot y^{-\frac{1}{3}} \cdot z^{-1} = x^{\frac{1}{3}} \times y^{\frac{2}{3}} \times z^0 = (xy^2)^{\frac{1}{3}} = \frac{1}{3} \sqrt[3]{xy^2} \]
b. \(ab^3 \times a^3b^{-2} = a^7b = (a^3b^2)^{\frac{1}{2}} = \sqrt{a^3b^2} \)

9. Sederhanakan bentuk operasi perpangkatan berikut ini, tuliskan jawabanmu dalam bentuk pangkat:

a. \(\sqrt[3]{abc} \times \sqrt[3]{abc} \)

b. \(\frac{\sqrt[3]{xyz}}{\sqrt[2]{xyz}} \)

Penyelesaian:

a. \(\sqrt[3]{abc} \times \sqrt[3]{abc} = \sqrt[3]{a \times b^3 \times c^3 \times a \times b^3 \times c^3} = \sqrt[3]{a^2 \times b^{15} \times c^{15}} = a^\frac{2}{3} \times b^5 \times c^5 \)

b. \(\frac{\sqrt[3]{xyz}}{\sqrt[2]{xyz}} = \frac{x^{\frac{1}{3}}y^{\frac{1}{3}}z^{-1}}{x^{\frac{2}{3}}y^{\frac{1}{3}}z^{-2}} = x^{\frac{1}{3}}y^{0}z^{-2} = x^{-\frac{1}{3}}z^{-\frac{2}{3}} \)

10. Gunakan kalkulator untuk mendapatkan nilai perpangkatan di bawah ini:

a. \(1.234^{\frac{1}{3}} \)

b. \(125^{\frac{1}{4}} \)

c. \(1.024^{\frac{1}{3}} \)

Proyek 1

 a. Nyatakan jumlah masing-masing populasi penduduk tersebut dalam bentuk notasi ilmiah
 b. Dapatkan juga luas wilayah di negara tersebut, Selanjutnya dapatkan kepadatan penduduk masing-masing negara. Nyatakan jawabannya dalam bentuk baku.
 d. Dari informasi yang siswa dapatkan pada poin butir c, Hitung juga kepadatan penduduk 10 tahun kedepan depan.

2. Seorang ayah memberikan sebuah tantangan kepada anaknya untuk menghitung jumlah biji jagung yang diperlukan untuk memenuhi papan catur. Jika pada kotak pertama diberi 1 biji jagung, kotak kedua 2 biji jagung, 4 biji jagung untuk kotak ketiga, 8 biji untuk kotak keempat demikian berlanjut sampai memenuhi ke enam puluh kotak.
 a. Bantu anak tersebut menentukan susunan jumlah biji pada masing-masing kotak papan catur tersebut.
 c. Gabungkan informasi yang siswa dapatkan dalam bentuk tabel perhitungan yang memuat kedua informasi tersebut!
 d. Berapakah uang yang harus dikeluarkan anak tersebut, jika harga biji jagung tiap kilogramnya adalah Rp8.500,00
1. Dapatkan hasil dari operasi perpangkatan berikut ini.

\[
\frac{32 + 16^4}{64}
\]

Penyelesaian:

\[
\frac{2.073}{2} = 1.0365
\]

2. Di sebuah desa di Kabupaten Larantuka, Kupang NTT terdapat sebuah lapangan seukuran lapangan sepak bola 120m × 90m. Pemerintah daerah setempat berencana menanami lapangan dengan rumput. Hitung luas rumput yang disediakan untuk menanami seluruh permukaan lapangan sepak bola tersebut. Jelaskan jawabannya dalam perpangkatan yang paling sederhana. (Luas persegi panjang adalah panjang × lebar)

Penyelesaian:

\[2^2 \times 3^3 \times 10^2 \text{ m}^2\]

3. Dapatkan bentuk perpangkatan yang ekivalen dengan bilangan di bawah ini (Jawaban dapat lebih dari satu bentuk perpangkatan).
 a. \(2\sqrt{8}\)
 b. \(\sqrt[3]{27}\)

Penyelesaian:

a. \(2\sqrt{2} = 2^{\frac{3}{2}}\)
 b. \(3 = \sqrt[3]{27}\)

4. Diketahui \(\frac{(x^{n-1}y^{n})^3}{x^{2n}y^{6n}}\) adalah senilai dengan \(x^ay^b\). Dapatkan nilai \(\frac{b}{a}\).

Penyelesaian:

\(2\)

5. Sederhanakan operasi perpangkatan aljabar berikut ini.
 a. \(y^3 \times (3y)^2\)
 b. \(\sqrt{b} \times 2y^5 \times b^3 6y^2 \times (2x^3) \times 3(x^2 y^2)^3 \times 5y^d\)
 c. \((m^3)^4 \times 4r^3\)
Penyelesaian:

a. $9y^5$

b. $12y^3 b^{-2}$

c. $4t^7 n^{12}$

d. $30 \times x^9 \times y^{10}$

6. Tuliskan bilangan di bawah ini dalam notasi ilmiah.

a. 0,00000056

b. 2.500.000

c. 0,98

d. 10.000.000.000.000

Penyelesaian:

a. $5,6 \times 10^{-11}$

b. $2,5 \times 10^6$

c. $9,8 \times 10^1$

d. 10^{12}

a. 12×2^3

b. $7,27 \times 10^2 - 0,5 \times 10^3$

c. $(8,32 \times 10^4) : (4 \times 10^6)$

d. $3,7 \times 10^1 \times 5,2 \times 10^{-3}$

Penyelesaian:

a. 96

b. 227

c. 20.800.000.000

d. 19,24

8. Diberikan $x = 24$ dan $y = 54$. Tentukan hasil operasi di bawah ini, tuliskan jawabannya dalam bentuk perpangkatan yang paling sederhana.

a. ...

b. ...

Penyelesaian:

a. $2^5 \times 3^4$

b. $2^1 \times 3^{-2}$

9. Berapakah hasil operasi perpangkatan berikut: $(492^5 - 246^5)$

Penyelesaian:

$31 \times (246^5)$

10. Berapa banyak detik dalam kurun waktu 60.000 tahun? Tuliskan hasilnya dalam notasi ilmiah.

Penyelesaian:

$1,89 \times 10^{12}$ detik
11. Tuliskan hasil operasi perpangkatan berikut ini.
 a. \(-8 \times 2^6\)
 b. \(5^4 \times 50\)
 c. \(\frac{16}{2^4}\)
 d. \(\frac{98}{7^3}\)

Penyelesaian:
 a. \(-2^9 = -512\)
 b. \(2 \times 56 = 31.250\)
 c. 1
 d. \(\frac{2}{7}\)

12. **Tantangan.** Pada acara lomba 17 Agustus di SDN 1 Taman, diadakan lomba mengisi air pada topi ulang tahun berbentuk kerucut dengan melewatkan perjalanan sejauh 50 m. Setiap meter yang ditempuh maka air akan berkurang sebanyak \(\frac{1}{10}\) bagian. Berapakah air yang terkumpul dalam satu kali perjalanan? (Dimensi topi ulang tahun: diameter = 10 cm dengan tinggi 12 cm. V\(_{\text{kerucut}}\) = \(\frac{1}{3} \pi r^2\).

13. Urutkan bilangan berikut ini, dari yang terbesar ke terkecil
 a. 7
 b. 0,89
 c. \(5,2 \times 10^3\)
 d. \(0,98 \times 10^4\)
 e. 0,0045
 f. 1.000

Penyelesaian:
 d - c - f - a - b - e

14. Cahaya bergerak dengan kecepatan \(3 \times 10^8\) m/s. Berapakah jauh cahaya bergerak dalam satu tahun? Tuliskan hasilnya dalam notasi ilmiah.

Penyelesaian:
 \(9,46 \times 10^{14}\)

15. Tuliskan hasil perpangkatan berikut ini.
 a. \(\frac{1}{2}(6^3 - 4^2)\)
 b. \(8 + 3 \times (-3)^4\)
 c. \((6^4 - 4^4) : 3\)
 d. \(\left(\frac{1}{4}\right)^4 \times \left(-\frac{1}{16}\right)^2\)
Perlu diingat bahwa operasi perkalian dan pembagian lebih didahulukan daripada operasi penjumlahan/pengurangan, kecuali dalam kasus khusus seperti berada dalam tanda kurung sehingga harus menjadi prioritas.

Penyelesaian:

\[a. \quad 100 \quad \quad \quad \quad c. \quad 1.040 \div 3\]
\[b. \quad 251 \quad \quad \quad \quad d. \quad \frac{1}{65.536}\]

16. Dapatkan nilai \(n\) dari persamaan berikut ini:

\[a. \quad 3n = 243 \quad \quad \quad \quad c. \quad 4n = (-2)^0\]
\[b. \quad 2^{n+1} = \frac{1}{16} \quad \quad \quad \quad d. \quad 48 : 3 = n^4\]

Penyelesaian:

\[a. \quad n = 5 \quad \quad \quad \quad c. \quad n = 0\]
\[b. \quad n = -5 \quad \quad \quad \quad d. \quad n = 2\]

17. Nyatakan pernyataan matematika berikut sebagai pernyataan Benar (B) atau Salah (S). Berikan alasanmu.

\[a. \quad \frac{6^3}{6^5} = 0 \quad \quad \quad \quad c. \quad \left(\frac{2}{5}\right)^7 = \frac{2^7}{5^7}\]
\[b. \quad (2 \times 6)^5 = 2^5 \times 6^5 \quad \quad \quad \quad d. \quad 4^3 \times 4^7 = 2^{10}\]

Penyelesaian:

\[a. \quad S \quad \quad \quad \quad c. \quad S\]
\[b. \quad B \quad \quad \quad \quad d. \quad B\]

18. Sederhanakan bentuk di bawah ini.

\[a. \quad \left(\frac{a^5 b^3 c^3}{4bc}\right) \times \left(\frac{8ac}{3bc^{-3}}\right)\]
\[b. \quad 2m^9 \times m^{\frac{2}{3}}\]
\[c. \quad m^3 + \frac{4}{m^3}\]
Penyelesaian:

a. \[\frac{2}{3} a^2 b c^3 \]

b. \[2m^3 \]

c. \[m^4 + \frac{4}{m^3} \]

19. Diberikan \(x = 27 \) dan \(y = 63 \). Tentukan hasil dari operasi di bawah ini, tuliskan jawabannya dalam bentuk bilangan berpangkat paling sederhana.

a. \[x^3 y \]

b. \[\frac{x}{\sqrt[3]{y}} \]

Penyelesaian:

a. \[7 \times 3^{11} \]

b. \[\frac{1}{7} 3^7 \]

20. Tuliskan dalam bentuk pangkat paling sederhana.

a. \[\frac{243}{20} \]

b. \[\frac{500}{9} \]

c. \[\frac{50}{625} \]

d. \[\frac{49}{686} \]

Penyelesaian:

a. \[\frac{3^5}{2^{15}} \]

b. \[\left(\frac{5}{3} \right)^2 \]

c. \[2 \times 5^{-2} \]

d. \[\frac{1}{7} \]
Pada hari pertama dalam suatu pengamatan di lab biologi, diketahui terdapat 8.000 bakteri. Setelah 4 hari pengamatan jumlah bakteri bertambah menjadi 32.000. Jumlah bakteri tersebut terus bertambah, sehingga kita bisa menghitung jumlah pertumbuhan bakteri tiap harinya. Apakah siswa dapat menentukan jumlah bakteri setelah 6, 8 dan 10 hari pengamatan? Pelajarilah lebih lanjut pada bab ini!

Kata Kunci
- Pola Bilangan Genap
- Pola Bilangan Segitiga
- Pola Bilangan Persegi
- Pola Bilangan Persegi Panjang
- Pola Bilangan Segitiga Pascal

Kompetensi Dasar
1.1 Menghargai dan menghayati ajaran agama yang dianutnya.
2.2 Memiliki rasa ingin tahu, percaya diri dan ketertarikan pada matematika serta memiliki rasa percaya pada daya dan kegunaan matematika, yang terbentuk melalui pengalaman belajar.
3.10 Menerapkan pola dan generalisasi untuk membuat prediksi.
4.4 Mengenal pola bilangan, barisan, deret, dan semacam, dan memperumumnya; menggunakan untuk menyelesaikan masalah nyata serta menemukan masalah baru.

Pengalaman Belajar
1. Menentukan pola berikutnya dari suatu susunan bilangan.
3. Menyelesaikan permasalahan sehari-hari yang berkaitan dengan deret aritmetika dan geometri.
Pola, Barisan, dan Deret

Pola Bilangan

- Pola Bilangan Ganjil
- Pola Bilangan Genap
- Pola Bilangan Segitiga
- Pola Bilangan Persegi
- Pola Bilangan Persegi Panjang
- Pola Bilangan Segitiga Pascal

Barisan Bilangan

- Aritmetika
- Geometri

Deret Bilangan

- Aritmetika
- Geometri

Setelah melihat bahwa aritmetika dengan bilangan Arab lebih mudah dan lebih efisien dibandingkan dengan angka romawi, Fibonacci melakukan perjalanan di sepanjang Mediterania untuk belajar dibawah bimbingan ahli matematika Arab terkemuka saat itu, dan kembali sekitar tahun 1200 M. Pada tahun 1202 M, pada saat ia berumur 32 tahun, ia menerbitkan buku berisi apa yang telah ia pelajari yaitu Liber Abaci atau "Book of Calculation".

Leonardo menjadi seorang tamu dari Emperor Frederick II, yang juga merupakan seorang pecinta Matematika dan Sains. Pada tahun 1240, Republik Pisa menganugerahi Leonardo dengan memakai nama alternatifnya, Leonard Bigollo.

Sumber: www.edulens.org

Hikmah yang bisa diambil

1. Fibonacci adalah orang yang mempunyai rasa ingin tahu yang sangat tinggi. Sekalipun angka Romawi sudah dikenal masyarakat Eropa pada umumnya, tapi dia terus menggali informasi mengenai penulisan bilangan Arab yang lebih mudah dan lebih efisien dari angka Romawi.

2. Tidak mudah puas terhadap sesuatu yang sudah didapatkan, sehingga terus berfikir melakukan inovasi untuk menemukan sesuatu yang baru.

A. Pola Bilangan

Pertanyaan Penting

- Berikan pengantar kepada siswa tentang contoh pola dalam kehidupan sehari-hari. Seperti misalnya nomor bangku di bioskop, susunan angka pada kalender, dan lainnya.
- Minta siswa untuk menjelaskan secara sederhana bagaimana cara untuk menentukan aturan pada tiap-tiap susunan tersebut.
- Minta siswa untuk memberikan contoh sederhana pola pada susunan bilangan dalam kehidupan sehari-hari dan menjelaskan cara untuk menentukan bilangan berikutnya dari susunan bilangan tersebut.

Pertanyaan Penting

Bagaimana cara untuk menentukan bilangan berikutnya dari suatu susunan bilangan?

Agar siswa dapat mengetahui dan memahami jawaban pertanyaan di atas lakukanlah kegiatan-kegiatan di bawah ini.

Kegiatan 2.1 Menentukan Gambar Berikutnya

2. Minta siswa untuk menalar secara mandiri agar dapat menentukan gambar kelima dengan mengamati susunan gambar yang ada pada tiap nomor.
3. Setelah mengerjakan soal, minta siswa untuk mencocokkan jawaban mereka dengan teman sebangku.
4. Lakukan penilaian kognitif terhadap jawaban siswa.
5. Perwakilkan siswa dapat menyampaikan jawabannya di papan tulis.
6. Guru dapat memberikan variasi lain dari soal pada kegiatan ini melalui soal-soal penentuan gambar berikutnya dari suatu susunan gambar yang bisa didapatkan melalui berbagai literatur yang ada.
Kegiatan 2.1
Menentukan Gambar Berikutnya

Perhatikan susunan gambar yang ada di bawah ini. Tiap soal terdiri dari 4 gambar dengan aturan tertentu, tentukanlah gambar kelima dari setiap soal di bawah ini.

1.

2.

3.

4.

5.

6.

7.

8.

9.
Kegiatan 2.2
Menentukan Nomor Rumah di Suatu Perumahan

1. Pada kegiatan ini siswa diminta untuk mengamati nomor rumah di suatu perumahan. Pada suatu perumahan sisi sebelah kiri jalan memiliki nomor rumah ganjil dan sisi sebelah kanan jalan memiliki nomor rumah genap, atau juga sebaliknya.

3. Minta siswa untuk melakukan kegiatan pada bagian ayo kita mencoba.

4. Pada bagian ayo kita menalar, minta siswa untuk mengerjakan secara mandiri.

5. Berikan pendampingan untuk siswa yang masih kurang mampu.

Ayo Kita Amati

![Gambar 2.2 Nomor rumah pada suatu Perumahan X](http://www.rumahku.com)

Sumber: http://www.rumahku.com
Pada suatu jalan di perumahan X, nomor pada setiap rumah mengikuti suatu aturan tertentu. Pada sisi kiri jalan, rumah bernomor 1 terletak pada posisi paling ujung, sedangkan pada sisi kanan jalan rumah yang terletak pada posisi paling ujung bernomor 2. Rumah bernomor 3 terletak tepat di samping rumah bernomor 1, dan rumah bernomor 4 terletak tepat di sebelah rumah bernomor 2. Rumah bernomor 5 terletak di antara rumah bernomor 3 dan 7, sedangkan rumah bernomor 6 terletak di antara rumah bernomor 4 dan 8, begitu seterusnya.

Ayo Kita Mencoba

Buatlah sebuah denah sederhana yang menggambarkan sepuluh rumah pertama yang terletak pada posisi ujung jalan di perumahan X tersebut, baik pada sisi kiri jalan maupun sisi kanan jalan. Sesuai informasi yang telah siswa dapatkan di atas, rumah yang bernomor 1 terletak pada posisi paling ujung sisi kiri jalan, dan rumah yang bernomor 2 terletak pada posisi paling ujung sisi kanan jalan. Berikan nomor pada setiap rumah sesuai dengan informasi yang ada. Dari denah yang telah dibuat, rumah nomor berapa yang terletak pada posisi kesepuluh dari ujung di sebelah kanan jalan?

Ayo Kita Menalar

a. Jika dalam satu jalan tersebut terdapat 100 rumah (banyaknya rumah pada sisi kiri dan kanan jalan masing-masing adalah 50), berapakah nomor rumah terbesar yang terletak pada sisi kiri jalan?
b. Menurutmu, bagaimana aturan untuk menentukan nomor rumah yang terletak pada sisi kiri maupun kanan jalan di perumahan X tersebut?
c. Carilah contoh benda-benda di sekitarmu yang memiliki suatu pola tertentu. Tuliskan minimal 3 contoh dan aturan yang terdapat pada tiap-tiap benda tersebut.

Kegiatan 2.3 Menata Tutup Botol

1. Pada kegiatan ini, guru membagi siswa ke dalam beberapa kelompok. Satu kelompok terdiri atas 5 siswa. Tiap siswa diminta untuk membawa sedikitnya 10 tutup botol dan kemudian digabungkan dengan milik anggota kelompoknya.
2. Peralatan yang dibutuhkan: tutup botol, selotip, kertas karton, gunting, kertas untuk mencatat hasil pengamatan.
3. Siswa pertama diminta untuk melakukan Kegiatan 2.3.1, setelah selesai siswa tersebut diminta mencatat hasilnya sesuai Tabel 2.1. Kemudian, siswa kedua...
diminta untuk melakukan Kegiatan 2.3.2 dan juga diminta mencatat hasilnya sesuai Tabel 2.1, begitu seterusnya sampai siswa kelima.

5. Pada bagian ayo kita menalar, minta siswa untuk menjawab pertanyaan yang ada. Minta mereka menjelaskan secara sederhana mengenai cara untuk mendapatkan pola bilangan berikutnya.

7. Pada bagian ayo kita simpulkan minta siswa menyimpulkan hasil dari kegiatan yang telah mereka lakukan.

8. Berikan kesempatan kepada siswa untuk bertanya dan mengemukakan pendapatnya.

Kegiatan 2.3
Menata Tutup Botol

Ayo Kita Mencoba

Buatlah kelompok yang terdiri dari 5 siswa. Setiap anak membawa 20 tutup botol air mineral. Kumpulkan tutup botol tersebut dalam satu kelompok. Siapkan kertas karton berukuran 2 x 1 meter persegi. Selanjutnya berikan lem pada bagian belakang dari tutup botol sehingga tutup botol tersebut dapat ditempelkan pada kertas karton. Tiap-tiap siswa, secara bergantian, diberikan tugas untuk membuat susunan tutup botol berdasarkan urutan berikut: siswa pertama melakukan Kegiatan 2.3.1, siswa kedua melakukan Kegiatan 2.3.2, begitu seterusnya sampai anak kelima.

Kegiatan 2.3.1

Susunlah tutup botol yang ada dengan susunan seperti pada gambar di bawah ini.

Sumber: Dokumen Kemdikbud
Gambar 2.3 Susunan tutup botol pada Kegiatan 2.3.1
Amatilah dan catat banyak tutup botol yang diperlukan untuk membuat susunan ke-1, ke-2, ke-3, ke-4, dan ke-5.

Kegiatan 2.3.2

Susunlah tutup botol yang ada dengan susun seperti pada gambar di bawah ini

Sumber: Dokumen Kemdikbud

Gambar 2.4 Susunan tutup botol pada Kegiatan 2.3.2

Kegiatan 2.3.3

Susunlah tutup botol yang ada dengan susun seperti pada gambar di bawah ini

Sumber: Dokumen Kemdikbud

Gambar 2.5 Susunan tutup botol pada Kegiatan 2.3.3

Kegiatan 2.3.4

Susunlah tutup botol yang ada dengan susun seperti pada gambar di bawah ini

Sumber: Dokumen Kemdikbud

Gambar 2.6 Susunan tutup botol pada Kegiatan 2.3.4
Kegiatan 2.3.5

Susunlah tutup botol yang ada dengan susunan seperti pada gambar di bawah ini

Gambar 2.7 Susunan tutup botol pada Kegiatan 2.3.5

Amatilah dan catat banyak tutup botol yang diperlukan untuk membuat susunan ke-1, ke-2, ke-3, ke-4, dan ke-5.

Pada Kegiatan 2.3.1 di atas, dapat diketahui banyak tutup botol yang digunakan untuk membuat susunan ke-1 adalah 1, susunan ke-2 adalah 3, dan seterusnya. Jumlah tutup botol yang digunakan untuk membuat tiap-tiap susunan pada setiap kegiatan berbeda. Hal ini terjadi karena aturan untuk membuat susunan pada setiap kegiatan juga berbeda.

Dari kegiatan pengamatan yang telah dilakukan siswa dalam kelompok, hitunglah banyak tutup botol yang diperlukan untuk membuat tiap-tiap susunan pada setiap kegiatan. Tuliskan hasilnya pada tabel di bawah ini.

<table>
<thead>
<tr>
<th>Pola ke-</th>
<th>Banyak Tutup Botol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Dokumen Kemdikbud
Perhatikan hasil yang telah siswa dapatkan pada Tabel 2.1 berdasarkan kegiatan yang telah dilakukan pada Kegiatan 2.3.1 sampai dengan Kegiatan 2.3.5. Jawablah pertanyaan di bawah ini.

a. Berapa banyak tutup botol yang diperlukan untuk membuat susunan ke-5 pada Kegiatan 2.3.2, susunan ke-4 pada Kegiatan 2.3.3, dan susunan ke-3 pada Kegiatan 2.3.4?

b. Perhatikan kembali bilangan-bilangan yang menunjukkan banyaknya tutup botol pada kolom sebelah kanan Tabel 2.1. Tentukan jumlah tutup botol yang digunakan untuk membuat susunan ke-6, ke-7, dan ke-8 pada tiap-tiap kegiatan (dari Kegiatan 2.3.1 sampai dengan Kegiatan 2.3.5).

Menurut siswa apakah bilangan-bilangan yang menunjukkan banyaknya tutup botol pada tiap-tiap susunan di masing-masing kegiatan memiliki aturan/pola tertentu? Bagaimanakah cara untuk mendapatkan susunan berikutnya?

Setelah siswa melakukan Kegiatan 2.3, kini siswa telah mengetahui beberapa jenis pola bilangan. Sekarang minta siswa mendiskusikan dengan teman kelompok untuk menjawab pertanyaan berikut ini:

a. Tuliskan 10 bilangan pertama dari tiap-tiap pola bilangan yang telah siswa pelajari pada Kegiatan 2.3.

b. Bagaimana aturan untuk menentukan bilangan berikutnya pada tiap-tiap pola bilangan tersebut?

Tuliskan hasil diskusi tersebut secara rapi, minta siswa untuk diskusi di depan kelas, dan memaparkan jawabannya di depan kelas.

- Tuliskan 20 bilangan pertama dari tiap-tiap pola bilangan yang telah siswa pelajari pada Kegiatan 2.3.
- Tuliskan aturan untuk mendapatkan bilangan berikutnya dari setiap pola bilangan tersebut.
Kegiatan 2.4 Segitiga Pascal

1. Pada kegiatan ini, guru menjelaskan terlebih dahulu kepada siswa mengenai sejarah segitiga pascal dan berikan penjelasan singkat mengenai segitiga pascal.
2. Minta siswa untuk mengamati setiap angka yang ada pada segitiga pascal.
3. Pada bagian ayo kita amati, minta siswa untuk menjumlahkan bilangan-bilangan pada tiap baris segitiga pascal dan mencatatkan hasilnya pada Tabel 2.2.
4. Pada bagian ayo kita menalar, minta siswa dengan cara mengamati jumlah baris pada segitiga pascal dan minta mereka menentukan aturannya.
5. Minta perwakilan dari siswa untuk memaparkan jawabannya di depan kelas.

Kegiatan 2.4 Segitiga Pascal

Ayo Kita Amati

![Gambar 2.8 Segitiga Pascal](Sumber: Dokumen Kemdikbud)

Gambar 2.8 Segitiga Pascal
Minta siswa untuk mengamati susunan bilangan yang terdapat pada segitiga pascal tersebut. Susunan bilangan 1 merupakan baris ke-1, susunan bilangan-bilangan 1 1 merupakan baris ke-2, susunan bilangan-bilangan 1 2 1 merupakan baris ke-3, dan seterusnya. Isihal tabel berikut ini yang menyatakan hasil penjumlahan bilangan-bilangan pada tiap baris segitiga pascal. Hasil penjumlahan bilangan-bilangan pada tiap baris segitiga pascal selanjutnya disebut dengan jumlah baris.

Tabel 2.2 Penjumlahan Bilangan Pada Setiap Baris Segitiga Pascal

<table>
<thead>
<tr>
<th>Baris ke-</th>
<th>Bentuk Penjumlahan</th>
<th>Jumlah Baris</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 + 1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1 + 2 + 1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

a. Berdasarkan Tabel 2.2, berapa jumlah baris ke-8 dari susunan bilangan segitiga Pascal?

b. Tentukan jumlah baris ke-9, ke-10, ke-11 dari susunan bilangan segitiga Pascal tanpa menuliskan bentuk jumlahan seperti yang terdapat pada kolom ke-2 Tabel 2.2 di atas.

Ayo Kita Menanya

Minta siswa mengamati jumlah baris dari susunan bilangan segitiga pascal yang terdapat pada kolom 3 Tabel 2.2. Kemudian, jawablah pertanyaan berikut ini:

a. Apakah bilangan-bilangan yang menyatakan jumlah baris tersebut membentuk suatu pola tertentu?

b. Bagaimanakah aturan untuk mendapatkan jumlah baris berikutnya?

Materi Esensi

Pola Bilangan

- Materi esensi mengenai pola bilangan membagas tentang beberapa jenis pola bilangan berdasarkan hasil kegiatan yang telah dilakukan sebelumnya. Pola bilangan yang dibahas di dalam bab ini antara lain adalah pola bilangan ganjil, pola bilangan genap, pola bilangan segitiga, pola bilangan persegi, pola bilangan persegi panjang, dan pola bilangan segitiga pascal.

- Berikan kesempatan kepada siswa untuk bertanya pada materi yang belum dipahami dan berikan bantuan pada siswa yang masih mengalami kesulitan dalam memahami materi pola bilangan.

Materi Esensi

Pola Bilangan

Pada beberapa kegiatan yang telah siswa lakukan di atas, siswa telah mempelajari beberapa jenis pola bilangan. Berikut ini adalah beberapa jenis pola bilangan tersebut.

A. Pola Bilangan Ganjil

B. Pola Bilangan Genap

Bilangan 2, 4, 6, 8, … adalah susunan bilangan yang memiliki suatu pola yang dinamakan dengan *pola bilangan genap*. Urutan pertama adalah 2, urutan kedua adalah 4, urutan ketiga adalah 6, dan seterusnya. Bilangan berikutnya diperoleh dengan menambahkan 2 pada bilangan sebelumnya. Contoh dari pola bilangan genap bisa dilihat pada Kegiatan 3.2.
C. Pola Bilangan Segitiga

Bilangan 1, 3, 6, 10, … adalah susunan bilangan yang memiliki suatu pola yang dinamakan dengan **pola bilangan segitiga**. Urutan pertama adalah 1, urutan kedua adalah 3, urutan ketiga adalah 6, dan seterusnya. Bilangan-bilangan tersebut berasal dari penjumlahan bilangan cacah, yaitu $0 + 1 = 1$, $0 + 1 + 2 = 3$, $0 + 1 + 2 + 3 = 6$, dan seterusnya. Contoh dari pola bilangan segitiga bisa dilihat pada Kegiatan 3.3.

D. Pola Bilangan Persegi

Bilangan 1, 4, 9, 16, … adalah susunan bilangan yang memiliki suatu pola yang dinamakan dengan **pola bilangan persegi**. Urutan pertama adalah 1, urutan kedua adalah 4, urutan ketiga adalah 9, dan seterusnya. Pola bilangan tersebut dinamakan mendapatkannya berasal dari kuadrat bilangan asli, yaitu $1^2 = 1$, $2^2 = 4$, $3^2 = 9$, dan seterusnya. Contoh dari pola bilangan persegi bisa dilihat pada Kegiatan 3.4.

E. Pola Bilangan Persegi Panjang

Bilangan 2, 6, 12, 20, … adalah susunan bilangan yang memiliki suatu pola yang dinamakan dengan **pola bilangan persegi panjang**. Urutan pertama adalah 2, urutan kedua adalah 6, urutan ketiga adalah 12, dan seterusnya. Bilangan-bilangan tersebut diperoleh dengan cara mengalikan bilangan yang menunjukkan baris dengan bilangan yang menunjukkan kolom sebagai berikut:

<table>
<thead>
<tr>
<th>baris</th>
<th>kolom</th>
<th>hasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>

Aturannya adalah bilangan yang menunjukkan kolom nilainya selalu satu lebih banyak dari bilangan yang menunjukkan baris. Contoh dari pola bilangan persegi panjang bisa dilihat pada Kegiatan 3.5.

F. Pola Bilangan Segitiga Pascal

Bilangan-bilangan pada segitiga Pascal memiliki suatu pola tertentu, yaitu apabila dua bilangan yang saling berdekatan dijumlahkan maka akan menghasilkan bilangan-bilangan pada baris selanjutnya, kecuali 1. Sedangkan hasil penjumlahan bilangan pada tiap-tiap baris segitiga Pascal juga memiliki suatu pola dengan rumus $2^n - 1$, dengan n menunjukkan posisi baris pada segitiga pascal.
TahuKah Kamu?
Salah satu kegunaan dari susunan bilangan pada segitiga pascal adalah untuk menentukan koefisien-koefisien suku-suku hasil perpangkatan \((a + b)^n\), dengan \(n\) adalah bilangan asli.

\[
(a + b)^0 = 1 \\
(a + b)^1 = a + b \\
(a + b)^2 = a^2 + 2ab + b^2 \\
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \\
\:
\]

Perhatikan hasil penjabaran dari \((a + b)^3\) di atas. Koefisien \(a^3\) adalah 1, koefisien \(a^2\) \(b\) adalah 3, koefisien \(ab^2\) adalah 3, dan koefisien \(b^3\) adalah 1.

Contoh 2.1
Menentukan Aturan Pada Susunan Bilangan

- Pada Contoh 2.1 diberikan salah jenis soal mengenai susunan bilangan. Siswa diminta untuk menentukan empat bilangan berikutnya setelah mengamati susunan bilangan yang diberikan sebelumnya.
- Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan menentukan aturan pada suatu susunan bilangan.

Contoh 2.1
Menentukan Aturan Pada Susunan Bilangan

Tentukan aturan untuk mendapatkan bilangan berikutnya pada tiap-tiap susunan bilangan berikut ini dan tentukan empat bilangan berikutnya!

a. 1, 4, 7, 10, …, …, …

b. 1, 4, 16, 64, …, …, …

c. 1, 8, 27, 64, …, …, …

d. 2.000, 1.800, 1.600, 1.400, …, …, …

Alternatif Penyelesaian:

a. 1, 4, 7, 10, …, …, …, …

b. 1, 4, 16, 64, …, …, …, …

c. 1, 8, 27, 64, …, …, …, …

Bilangan pertama pada susunan bilangan di atas adalah $1 = 1^3$, bilangan kedua adalah $1 = 2^3$, bilangan ketiga adalah $27 = 3^3$, bilangan keempat adalah $64 = 4^3$. Bilangan berikutnya diperoleh dengan melakukan pemangkatan tiga terhadap urutan bilangan tersebut. Empat bilangan berikutnya adalah $5^3 = 125$, $6^3 = 216$, $7^3 = 343$, dan $8^3 = 512$.

d. 2.000, 1.800, 1.600, 1.400, …, …, …, …

Contoh 2.2

Menentukan Pola Bilangan Pada Susunan Kardus

Pada Contoh 2.2, siswa diminta untuk mengamati susunan kardus yang ada pada gambar. Kemudian siswa diminta untuk menentukan pola bilangan yang terbentuk dari susunan kardus tersebut.

Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan aplikasi dari pola bilangan dalam kehidupan sehari-hari.

Contoh 2.2

Menentukan Pola Bilangan Pada Susunan Kardus

Perhatikan susunan kardus yang dibentuk menurut aturan seperti pada gambar di bawah ini:

![Gambar 2.9 Susunan Kardus](image)

Gambar 2.9 Susunan Kardus

a. Buatlah tabel yang menunjukkan banyaknya kardus yang digunakan untuk membuat susunan ke-1, ke-2, ke-3, dan ke-4!

b. Pola bilangan apa yang didapatkan?

c. Berapakah jumlah kardus yang diperlukan untuk membuat susunan ke-100?
Alternatif Penyelesaian:

a. Tabel berikut menunjukkan banyak kardus yang digunakan untuk membuat susunan ke-1 sampai pola ke-4.

<table>
<thead>
<tr>
<th>Susunan ke-</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah Kardus</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

b. Susunan berikutnya diperoleh dengan menambahkan satu buah kardus pada bagian atas, serta satu buah kardus pada bagian kanan. Sehingga untuk mendapatkan jumlah kardus yang dibutuhkan agar dapat membuat susunan berikutnya adalah dengan menambahkan dua buah kardus pada susunan sebelumnya. Jika siswa perhatikan, pola bilangan yang terbentuk merupakan pola bilangan genap. Bilangan pertama adalah dua, dan untuk mendapatkan bilangan berikutnya dapat diperoleh dengan menambahkan dua pada bilangan sebelumnya.

c. Jumlah kardus yang diperlukan untuk membuat susunan ke-100 sama dengan bilangan genap yang ke-100. Sehingga jumlah kardus yang diperlukan untuk membuat susunan ke-100 adalah 200 buah kardus.

Ayo Kita Tinjau Ulang

- Pada bagian tinjau ulang siswa diminta untuk mengingat dan mengulang kembali materi yang telah dipelajari pada bab pola bilangan.
- Minta siswa untuk mengerjakan soal secara mandiri dengan mengamati pola bilangan yang ada pada tiap soal serta melengkap bagian yang kosong. Setelah itu siswa diminta untuk menjelaskan secara singkat mengenai aturan untuk mendapatkan pola berikutnya pada masing-masing susunan bilangan.
- Minta siswa untuk menukarkan jawaban dengan teman sebangku dan mencocokkan semua jawaban.
- Berikan penilaian pada tiap siswa berdasarkan jawabannya masing-masing.

Ayo Kita Tinjau Ulang

1. Sebutkan beberapa jenis pola bilangan yang telah siswa pelajari pada bab ini dan sebutkan aturan untuk tiap-tiap pola bilangan tersebut.

2. Salinlah urutan bilangan berikut ini, kemudian isilah bagian yang kosong sehingga membentuk susunan bilangan dengan pola tertentu. Tentukan aturan untuk mendapatkan pola berikutnya.
MATEMATIKA

Latihan 2.1 Pola Bilangan

1. Lakukan penilaian sikap saat siswa melakukan kegiatan Diskusi dan Berbagi.
2. Lakukan penilaian pengetahuan saat siswa mengerjakan kegiatan Ayo Kita Menalar.
3. Indikator semua siswa sudah menguasai konsep adalah ketika siswa kelompok rendah sudah mampu menguasai konsep.
4. Minta siswa untuk mengerjakan soal Latihan 2.1 dengan mandiri.
5. Lakukan kegiatan pembelajaran pengayaan dan remedial.

Latihan 2.1 Pola Bilangan

1. Tentukan 3 bilangan berikutnya dari susunan bilangan yang ada di bawah ini!

 a. 2, 10, 50, 250, …, …, …
 b. 192, 96, 48, 24, …, …, …
 c. 164, 172, 180, 188, …, …, …
 d. \[\frac{3}{4}, 1, \frac{4}{3}, \frac{16}{9}, \ldots, \ldots, \ldots \]
 e. 243, 81, 27, 9, …, …, …

Penyelesaian:

b. Bilangan berikutnya didapatkan dengan mengalikan bilangan sebelumnya dengan \(\frac{1}{5} \). Tiga bilangan berikutnya adalah 12, 6, 3.

c. Bilangan berikutnya didapatkan dengan menambahkan bilangan sebelumnya dengan 8. Tiga bilangan berikutnya adalah 196, 204, 212.

d. Bilangan berikutnya didapatkan dengan mengalikan bilangan sebelumnya dengan \(\frac{4}{3} \). Tiga bilangan berikutnya adalah \(\frac{64}{27}, \frac{256}{81}, \frac{1.024}{243} \).
e. Bilangan berikutnya didapatkan dengan membagi bilangan sebelumnya dengan 3. Tiga bilangan berikutnya adalah 3, 1, $\frac{1}{3}$.

2. Lengkapilah susunan gambar yang ada di bawah ini pada bagian yang kosong.

![Susunan Gambar](image)

Sumber: Dokumen Kemdikbud

Gambar 2.10 Melengkapi susunan gambar

Penyelesaian:

Guru bisa melihat contoh soal pada Kegiatan 2.1 bab A. Guru dapat memberikan variasi soal lainnya yang berkaitan dengan pola pada suatu susunan gambar.

3. Lengkapilah susunan bilangan di bawah ini berdasarkan pola yang ada pada tiap-tiap susunan bilangan!

a. 3, 5, 9, 15, 23, ..., 45, ..., ...
 d. 1, 4, 20, 80, ..., 1.600, 8.000, ..., ...

b. 5, 10, 8, 14, 11, 18, ..., ..., ...
 e. 5, 6, 9, 14, 21, ..., ..., 54, ...

c. 99, 94, 97, 92, 95, ..., ..., 88, ...

Penyelesaian:

a. 33; 59; 75
 d. 400; 32.000; 160.000

b. 14; 22; 17
 e. 30; 41; 69

c. 90; 93; 91

4. **Susunan Lantai.** Perhatikan susunan lantai dari beberapa buah persegi yang diarsir seperti pada gambar di samping ini. Susunan persegi tersebut membentuk suatu pola tertentu. Berapakah banyak persegi yang diarsir pada pola ke-7?

Gambar 2.11 Susunan lantai
Penyelesaian:

5. Perhatikan susunan segitiga pada gambar di bawah ini:

\[
\begin{align*}
\Delta & \quad \Delta \quad \Delta \quad \Delta \quad \Delta \quad \Delta \quad \Delta \\
\end{align*}
\]

Gambar 2.12 Susunan segitiga

a. Tuliskanlah jumlah segitiga pada susunan ke-1 sampai susunan ke-6!
b. Berapakah jumlah segitiga pada susunan ke-10?
c. Berapakah jumlah segitiga pada susunan ke-\(n\)?

Penyelesaian:

a. Susunan ke-1 sampai ke-6 berturut-turut adalah 1, 3, 5, 7, 9, dan 11. Susunan berikutnya didapatkan dengan menambahkan dua segitiga pada susunan sebelumnya.
c. Susunan bilangan yang menyatakan jumlah segitiga pada tiap-tiap susunan mengikuti aturan pada bilangan ganjil. Jumlah segitiga pada susunan ke-\(n\) adalah bilangan ganjil ke-\(n\) yaitu \(2n - 1\).

\[
\begin{align*}
\text{Gambar 2.13 Susunan Batang Korek Api}
\end{align*}
\]

a. Buatlah tabel yang menunjukkan banyaknya korek api yang digunakan untuk membuat menara 1 tingkat, 2 tingkat, sampai dengan 8 tingkat!
b. Berapakah banyak korek api yang digunakan jika Amir ingin membuat susunan 10 tingkat?
c. Berapa banyak batang korek api yang digunakan untuk membuat \(n \) tingkat?
 Jelaskan jawaban!

Penyelesaian:

a. Jumlah batang korek api yang dibutuhkan untuk membuat menara tingkat 1 sampai tingkat 8 berturut-turut adalah 3, 9, 18, 30, 45, 63, 84, dan 108.

b. Banyaknya korek api yang digunakan untuk membuat susunan 10 tingkat adalah 165.

c. Bilangan yang menyatakan banyaknya batang korek api yang digunakan untuk membuat tiap-tiap susunan merupakan pola bilangan bertingkat. Susunan bilangan tersebut memiliki selisih tetap sebesar 3 pada tingkat 2. Dengan menggunakan aturan ini, maka akan diperoleh banyaknya batang korek api yang digunakan untuk membuat \(n \) tingkat yaitu \(\frac{3}{2} n(n + 1) \).

7. Wawan memiliki 7 buah kotak dengan ukuran yang berbeda-beda. Masing-masing kotak berbentuk kubus. Wawan harus mengisi tiap kotak tersebut dengan kubus-kubus kecil yang memiliki panjang sisi 1 cm. Wawan telah mengisi 3 kotak. Jumlah kubus kecil yang tepat masuk ke dalam tiap-tiap kotak adalah sebagai berikut:

 343, 216, 125, ..., ..., ..., ...

Lengkapilah jumlah kubus kecil yang dibutuhkan untuk keempat kotak selanjutnya!

Penyelesaian:

8. Lengkapilah bagian-bagian yang kosong dalam pola bilangan di bawah ini:

 \[(1 \times 9) + 2 = 11\]
 \[(12 \times 9) + ... = 111\]
 \[(... \times 9) + 4 = 1.111\]
 \[(... \times ...) + 5 = 11.111\]
 \[(... \times ...) + ... = 111.111\]
 \[(... \times ...) + ... = 1.111.111\]
Penyelesaian:

(1 × 9) + 2 = 11
(12 × 9) + 3 = 111
(123 × 9) + 4 = 1.111
(1234 × 9) + 5 = 11.111
(12345 × 9) + 6 = 111.111
(123456 × 9) + 7 = 1.111.111

9. Perhatikan pola bilangan di bawah ini:

a. 1
 2 3
 4 5 6
 7 8 9 10
 11 12 13 14 15

b. 1
 2 3 4
 5 6 7 8 9
 10 11 12 13 14 15 16
 17 18 19 20 21 22 23 24 25

Tentukan bilangan pertama pada baris ke-40, 60, dan 100 dari masing-masing susunan bilangan di atas! Bagaimana cara mendapatkannya? Apakah siswa dapat menentukan bilangan pertama pada baris ke-\(n\) untuk masing-masing susunan bilangan di atas? Jelaskan secara singkat!

Penyelesaian:

\[
\begin{array}{ccccccc}
1 & 2 & 4 & 7 & 11 & \ldots \\
+1 & +2 & +3 & +4 & \ldots \\
+1 & +1 & +1 & \ldots \\
\end{array}
\]

Dengan menggunakan aturan ini, dapatkan bilangan pertama pada tiap-tiap baris dari susunan bilangan tersebut. Dengan demikian diperoleh bilangan pertama pada baris ke-40, ke-60, dan ke-100 berturut-turut adalah 781, 1.771, dan 4.951. Bilangan pertama pada baris ke-\(n\) adalah \(1/2 n(n - 1) + 1\), dengan \(n\) adalah bilangan asli.

\[
\begin{align*}
 &1 & 2 & 5 & 10 & 17 & \ldots \\
 +1 & +3 & +5 & +7 & & \\
 +2 & +2 & +2 & & \\
\end{align*}
\]

Dengan menggunakan aturan ini, dapatkan bilangan pertama pada tiap-tiap baris dari susunan bilangan tersebut. Dengan demikian diperoleh bilangan pertama pada baris ke-40, ke-60, dan ke-100 berturut-turut adalah 1.522, 3.482, dan 9.802. Bilangan pertama pada baris ke-\(n\) adalah \(n(n - 2) + 2\), dengan \(n\) adalah bilangan asli.

B. Barisan Bilangan

Pertanyaan Penting

- Minta siswa untuk mengamati kembali contoh-contoh susunan bilangan yang telah dipelajari pada Bab A.
- Berikan sedikit penjelasan bahwa bilangan yang memiliki suatu pola tertentu akan membentuk barisan bilangan.

Perhatikan kembali contoh-contoh susunan bilangan yang telah siswa pelajari pada Bab A. Susunan bilangan tersebut memiliki suatu pola atau aturan tertentu. Apa yang dimaksud barisan bilangan? Untuk mengetahui jawabannya cobalah lakukan kegiatan-kegiatan berikut ini.

Kegiatan 2.5

1. Kegiatan 2.5 ini bertujuan untuk mengarahkan siswa agar lebih memahami definisi dari barisan bilangan.
2. Minta siswa untuk mengamati data tinggi badan siswa pada Tabel 2.3.

3. Pada bagian ayo kita amati, minta siswa untuk mengamati data tinggi badan siswa kelas IX A SMP Ceria berdasarkan Tabel 2.3

4. Pada bagian ayo kita menalar minta siswa untuk mengurutkan tinggi badan dari yang terpendek hingga yang tertinggi, serta menuliskan hasil pengurutannya ke dalam Tabel 2.4.

5. Pada bagian ayo kita menalar, minta siswa untuk mendiskusikan soal yang ada dengan teman sebangkunya. Minta salah satu perwakilan siswa untuk memaparkan jawabannya di depan kelas.

6. Pada bagian ayo kita simpulkan, minta siswa untuk menyimpulkan definisi dari barisan bilangan dan suku dari keterangan yang mereka dapat pada Kegiatan 2.5. Berikan penjelasan secukupnya jika masih ada siswa yang belum memahami definisi dari barisan bilangan dan suku.

Kegiatan 2.5
Menentukan Urutan dalam Barisan Berdasarkan Tinggi Badan

Menentukan Urutan dalam Barisan Berdasarkan Tinggi Badan

Pada setiap hari Senin pagi, seluruh siswa SMP Ceria selalu melaksanakan upacara bendera. Mereka semua berbaris secara rapi agar dapat mengikuti upacara bendera secara khidmat. Setiap kelas di SMP Ceria terdiri dari 20 orang siswa. Pada kelas IX A, jumlah siswa laki-laki adalah 10 orang dan jumlah siswa perempuan juga 10 orang. Formasi barisan yang dibentuk oleh tiap-tiap kelas adalah terdiri dari 2 baris yang sejajar, dimana baris pertama diisi oleh siswa laki-laki dan baris kedua diisi oleh siswa perempuan. Berikut adalah data siswa laki-laki beserta tinggi badannya di kelas IX A:

Tabel 2.3 Data Tinggi Badan Siswa Kelas IX A SMP Ceria (dalam cm)

<table>
<thead>
<tr>
<th>Nama Siswa</th>
<th>Tinggi Badan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahim</td>
<td>157</td>
</tr>
<tr>
<td>Mufid</td>
<td>154</td>
</tr>
<tr>
<td>Wawan</td>
<td>163</td>
</tr>
<tr>
<td>Hafid</td>
<td>169</td>
</tr>
<tr>
<td>Nama Siswa</td>
<td>Tinggi Badan</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Budi</td>
<td>173</td>
</tr>
<tr>
<td>Aldo</td>
<td>176</td>
</tr>
<tr>
<td>Stevan</td>
<td>151</td>
</tr>
<tr>
<td>Andika</td>
<td>165</td>
</tr>
<tr>
<td>Andre</td>
<td>160</td>
</tr>
<tr>
<td>Rudi</td>
<td>179</td>
</tr>
</tbody>
</table>

Ayo Kita Mencoba

Minta siswa memerhatikan data tinggi badan dari 10 siswa kelas IX A SMP Ceria seperti yang terlihat pada Tabel 2.3.

a. Siapakah siswa tertinggi dan siswa terpendek dalam kelas tersebut?

<table>
<thead>
<tr>
<th>Urutan ke-</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nama Siswa</td>
<td></td>
</tr>
<tr>
<td>Tinggi Badan</td>
<td></td>
</tr>
</tbody>
</table>

c. Siapakah siswa yang terletak pada urutan ke-5 dan ke-8, dan berapa tinggi siswa tersebut?

Ayo Kita Menalar

Menurut siswa, bagaimana aturan untuk mengurutkan kesepuluh siswa tersebut dalam satu barisan berdasarkan tinggi badannya?
Informasi Utama

Susunan bilangan yang menyatakan tinggi badan kesepuluh siswa tersebut membentuk suatu barisan bilangan dengan aturan/pola tertentu. Bilangan-bilangan yang terdapat dalam barisan bilangan tersebut dikenal dengan nama suku. Secara umum suku-suku pada barisan bilangan dapat dituliskan sebagai $U_1, U_2, U_3, \ldots, U_n$.

Ayo Kita Simpulkan

Dari Kegiatan 2.5 di atas, kesimpulan apa yang siswa peroleh?

Apa yang dimaksud dengan barisan bilangan?
Apa yang dimaksud suku dari barisan bilangan?

Kegiatan 2.6 Menyusun Batang Korek Api

1. Pada kegiatan ini, guru membagi siswa ke dalam beberapa kelompok. Satu kelompok terdiri atas 3 sampai 4 siswa.

2. Tiap kelompok diwajibkan membawa peralatan berikut: 2 kotak korek api, kertas karton, lem, kertas untuk mencatat hasil pengamatan.

3. Tiap kelompok siswa diminta untuk melakukan kegiatan 2 dan mencatat hasil pengamatan pada Tabel 2.5.

4. Pada bagian ayo kita menalar, minta siswa untuk mendiskusikan soal di yang ada dengan teman sekelompoknya. Minta salah satu perwakilan siswa untuk memaparkan jawabannya di depan kelas.

5. Berikan penjelasan secukupnya kepada siswa yang belum memahami materi dengan baik.

Kegiatan 2.6 Menyusun Batang Korek Api

Ayo Kita Mencoba

Buatlah kelompok yang terdiri dari 3 atau 4 anak. Sediakan 2 kotak korek api dan kertas karton. Pada tiap-tiap batang korek api oleskan lem sehingga batang korek api
tersebut dapat ditempelkan pada kertas karton. Tempelkan batang korek api tersebut pada kertas karton dengan susunan seperti pada gambar di bawah ini:

![Gambar Susunan batang korek api](image)

*Sumber: Dokumen Kemdikbud
Gambar 2.14 Susunan batang korek api

Ayo Kita Amati

Minta siswa mengamati susunan yang dibentuk dari batang korek api seperti pada gambar di atas. Pada kegiatan tersebut, dapat dilihat bahwa untuk membuat susunan ke-1 dan ke-2 masing-masing diperlukan 4 dan 7 batang korek api. Berapa banyak batang korek api yang diperlukan untuk membuat susunan ke-3, ke-4, dan ke-5? Tuliskan hasil pengamatan pada tabel berikut:

Tabel 2.5 Hasil pengamatan banyak batang korek api pada tiap susunan

<table>
<thead>
<tr>
<th>Susunan ke-</th>
<th>Banyak batang korek api</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
</tr>
</tbody>
</table>
Menurut siswa, berapakah jumlah tutup batang korek api yang diperlukan untuk membuat pola ke-6 dan ke-7?

Informasi Utama

Dari Kegiatan 2.6 yang telah siswa lakukan, dapat siswa lihat bahwa susunan bilangan yang menyatakan banyaknya batang korek api untuk membuat tiap-tiap susunan membentuk suatu barisan bilangan yang disebut dengan **barisan aritmetika**. Selisih antara dua suku yang berurutan selalu tetap dan disebut **beda**.

Ayo Kita Simpulkan

Dari Kegiatan 2.6 di atas, kesimpulan apa yang siswa peroleh?

Apakah yang dimaksud dengan **barisan aritmetika**? Jawablah dengan menggunakan kata-katamu sendiri.

Ayo Kita Mencoba

Perhatikan kembali kolom 2 pada Tabel 2.5. Bilangan-bilangan yang menunjukkan banyaknya batang korek api yang diperlukan untuk membuat susunan pertama sampai kelima dapat dituliskan dalam bentuk 4, 7, 10, 13, 16. Apakah siswa dapat menentukan banyaknya batang korek api yang diperlukan untuk membuat susunan ke-10 dan ke-100? Dapatkan siswa menjelaskan secara singkat cara menentukannya?
Untuk menjawab pertanyaan tersebut lakukan kegiatan di bawah ini. Banyaknya batang korek api yang digunakan untuk membuat tiap-tiap susunan selanjutnya disebut suku dari barisan aritmetika yang terbentuk. Lengkapi tabel di bawah ini:

<table>
<thead>
<tr>
<th>Susunan ke-</th>
<th>Suku</th>
<th>Pola Bilangan dengan Beda 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>$4 = 4 + (1 - 1) \times 3$</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>$7 = 4 + (2 - 1) \times 3$</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>$10 = 4 + (3 - 1) \times 3$</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>$13 = 4 + (4 - 1) \times 3$</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Informasi Utama

Perhatikan bilangan-bilangan pada kolom kedua tabel di atas, bilangan 4 menyatakan suku ke-1 dari barisan aritmetika tersebut. Bilangan 7 menyatakan suku ke-2 dari barisan aritmetika tersebut, dan seterusnya. Sekarang perhatikan kolom sebelah kanan dari tabel di atas.

Suku kedua adalah 7, dengan demikian didapatkan bentuk pola bilangan dengan beda 3 adalah $7 = 4 + (2 - 1) \times 3$. Angka 4 pada bagian pertama ruas kanan persamaan tersebut menunjukkan suku pertama atau suku pertama dari barisan aritmetika yang terbentuk. Angka 2 menunjukkan bahwa 7 merupakan suku ke-2. Sedangkan angka 3 menunjukkan suku ke-2 dari barisan aritmetika tersebut.

Ayo Kita Menanya

a. Bagaimana cara siswa menentukan suku ke-9, 10, dan 11 dari barisan aritmetika tersebut? Berapakah nilainya?

b. Menurut siswa, apa hubungan antara suku pertama, beda, dengan nilai tiap-tiap suku dari barisan aritmetika tersebut?

c. Tentukan suku ke 100, 500, dan 1.000 dari barisan aritmetika tersebut.

a. Perhatikan kembali kolom sebelah kanan pada tabel di atas. Tentukan rumus umum suku ke-n pada barisan aritmetika tersebut sesuai dengan bentuk yang terdapat pada kolom sebelah kanan tabel di atas.

b. Jika suku pertama dari suatu barisan aritmetika disimbolkan dengan \(a\), beda dari barisan aritmetika disimbolkan dengan \(b\), dan suku ke-n dari barisan aritmetika disimbolkan dengan \(U_n\), tuliskan rumus suku ke-n yang melibatkan \(a\) dan \(b\).

 Tuliskan hasil diskusi tersebut secara rapi. Bersiaplah untuk diskusi di depan kelas, dan paparkan jawaban di depan temanmu.

Dari kegiatan di atas, kesimpulan apa yang siswa peroleh?

Bagaimana rumus suku ke-\(n\) (disimbolkan dengan \(U_n\)) dari suatu barisan aritmetika jika diketahui suku pertama adalah \(a\) dan beda dalam barisan aritmetika adalah \(b\)?

Kegiatan 2.7 Melipat dan Menghitung Potongan Kertas

1. Kegiatan 2.7 ini dilakukan secara individu. Tiap siswa diminta untuk membawa satu lembar kertas hvs.

2. Mintalah siswa untuk mengikuti tiap langkah pada Kegiatan 2.7 dan menjawab pertanyaan yang ada berdasarkan hasil pengamatan.

3. Pada bagian ayo kita amati, minta siswa untuk mengamati jumlah potongan kertas yang ada pada setiap lipatan dan menuliskan hasil pengamatan pada Tabel 2.6.
4. Pada bagian ayo kita menalar, minta siswa untuk mengerjakan secara mandiri dan minta salah satu perwakilan siswa untuk memaparkan jawabannya di depan kelas.

5. Berikan kesempatan kepada siswa untuk bertanya dan berikan penjelasan secukupnya bagi siswa yang belum memahami materi dengan baik.

Kegiatan 2.7 Melipat dan Menghitung Potongan Kertas

Ayo Kita Mencoba

Pada kegiatan ini, siswa diwajibkan untuk membawa satu lembar kertas hvs. Ikuti langkah-langkah kegiatan di bawah ini:

1. Lipatlah satu lembar kertas yang dibawa sehingga menjadi 2 bagian yang sama. Guntinglah menurut lipatan tersebut. Ada berapa banyak potongan kertas?

2. Susunlah semua potongan kertas tersebut sehingga saling menutup. Lipatlah susunan kertas tersebut menjadi 2 bagian yang sama, kemudian guntinglah menurut lipatan tersebut. Ada berapa banyak potongan kertas sekarang?

3. Lakukan kegiatan tersebut sampai 7 kali!

Ayo Kita Amati

Minta siswa mengamati jumlah potongan kertas yang ada setiap kali siswa melakukan kegiatan melipat dan menggunting kertas. Setelah melakukan kegiatan ini sebanyak 1 dan 2 kali, diperoleh banyak potongan kertas yang ada masing-masing sebanyak 2 dan 4. Tuliskan hasil pengamatan pada tabel di bawah ini:

<table>
<thead>
<tr>
<th>Kegiatan Melipat dan Menggunting Kertas ke-</th>
<th>Banyak Potongan Kertas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>…</td>
</tr>
</tbody>
</table>

90 Buku Guru Kelas IX SMP/MTs
a. Berapakah banyak potongan kertas setelah siswa melakukan kegiatan tersebut sampai 8 kali?

b. Tentukan banyak potongan kertas jika siswa melakukan kegiatan melipat dan menggunting kertas tersebut sampai 10 kali?

Perhatikan kembali bilangan-bilangan pada pengamatan terhadap banyak potongan kertas yang terbentuk sesuai Tabel 2.6. Setelah itu jawablah pertanyaan di bawah ini:

a. Apakah bilangan yang menyatakan banyak potongan kertas membentuk suatu barisan bilangan?

b. Berdasarkan Tabel 2.6, bagian manakah yang menunjukkan suku-suku dari barisan bilangan yang terbentuk?

c. Bagaimana aturan untuk mendapatkan suku berikutnya dari barisan bilangan tersebut?

d. Apakah perbandingan antara dua suku yang berurutan selalu sama/tetap?

Informasi Utama

Dari Kegiatan 2.7 yang telah dilakukan siswa, siswa dapat melihat bahwa susunan bilangan yang menyatakan banyaknya potongan kertas pada tiap-tiap kegiatan melipat dan menggunting kertas membentuk suatu barisan bilangan yang disebut dengan **barisan geometri**. Perbandingan antara dua suku yang berurutan selalu bernilai tetap dan disebut **rasio**.
Dari Kegiatan 2.7 di atas, kesimpulan apa yang siswa peroleh?

Apakah yang dimaksud dengan **barisan geometri**? Jawablah dengan menggunakan kata-katamu sendiri.

Perhatikan kembali kolom 2 pada Tabel 2.6. Bilangan-bilangan yang menunjukkan jumlah potongan kertas yang ada pada kegiatan melipat dan memotong kertas ke-1 sampai ke-7 dapat ditulis dalam bentuk 2, 4, 8, 16, 32, 64, 128. Apakah siswa dapat menentukan banyak potongan kertas yang terbentuk pada kegiatan ke-8 dan kegiatan ke-10? Dapatkah siswa menjelaskan secara singkat cara menentukannya?

<table>
<thead>
<tr>
<th>Susunan ke-</th>
<th>Suku</th>
<th>Pola Bilangan dengan Rasio 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>(2 = 2 \times 2^{1-1})</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>(4 = 2 \times 2^{2-1})</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>(8 = 2 \times 2^{3-1})</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>(16 = 2 \times 2^{4-1})</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Informasi Utama

Suku ketiga adalah 8, dengan demikian didapatkan bentuk pola bilangan dengan rasio 2 adalah \(8 = 2 \times 2^{3-1}\). Angka 2 pada bagian pertama ruas kanan persamaan tersebut menunjukkan suku pertama dari barisan geometri yang terbentuk. Pada bagian perpangkatan, angka 2 yang merupakan basis dari perpangkatan tersebut menunjukkan rasio dari barisan geometri. Sedangkan angka 3 menunjukkan bahwa 8 merupakan suku ke-3 dari barisan geometri tersebut.

Ayo Kita Menanya

Berdasarkan hasil pengamatan siswa di atas, coba buatlah pertanyaan yang berkaitan dengan barisan geometri. Tuliskan pertanyaan kalian di buku tulis.

Ayo Kita Menalar

a. Bagaimana cara siswa menentukan suku ke-9, 10, dan 11 dari barisan aritmetika tersebut? Berapakah nilainya?

b. Menurut siswa, apa hubungan antara suku pertama, rasio, dengan nilai tiap-tiap suku dari barisan geometri tersebut?

c. Tentukan suku ke 15 dan 20 dari barisan geometri tersebut.

Diskusi dan Berbagi

a. Perhatikan kembali kolom sebelah kanan pada tabel di atas. Tentukan rumus umum suku ke-\(n\) pada barisan geometri tersebut sesuai dengan bentuk yang terdapat pada kolom sebelah kanan tabel di atas?

b. Jika suku pertama dari barisan geometri tersebut disimbolkan dengan \(a\), rasio dari barisan geometri disimbolkan dengan \(r\), dan suku ke-\(n\) dari barisan geometri disimbolkan dengan \(U_n\), tuliskan rumus suku ke-\(n\) yang melibatkan \(a\) dan \(r\).

Tuliskan hasil diskusi tersebut secara rapi. Bersiaplah untuk diskusi di depan kelas, dan paparkan jawaban di depan temanmu.
Bagaimana rumus suku ke-\(n \) (disombolkan dengan \(U_n \)) dari suatu barisan geometri jika diketahui suku pertama adalah \(a \) dan rasio dalam barisan geometri adalah \(r \)?

Barisan Bilangan

Materi Esensi

- Materi esensi mengenai barisan bilangan membahas barisan aritmatika dan barisan geometri beserta rumusnya.
- Berikan kesempatan kepada siswa untuk bertanya pada materi yang belum dipahami.
- Berikan bantuan pada siswa yang masih mengalami kesulitan dalam memahami materi barisan bilangan.

Materi Esensi

Susunan bilangan yang memiliki pola atau aturan tertentu disebut barisan bilangan. Kedudukan tiap-tiap bilangan pada barisan bilangan disebut suku-suku dari barisan bilangan tersebut. Secara umum suku-suku pada barisan bilangan dapat dituliskan sebagai \(U_1, U_2, U_3, \ldots, U_n \).

A. Barisan Aritmetika

Coba siswa perhatikan kembali hasil yang telah siswa dapatkan pada Tabel 2.5. Suku-suku pada barisan bilangan tersebut ditulis secara berurutan seperti di bawah ini.

\[
\begin{array}{cccccc}
4 & 7 & 10 & 13 & 16 & \ldots \\
+3 & +3 & +3 & +3 & \\
\end{array}
\]

Terlihat bahwa selisih antar dua suku berurutan adalah 3, atau bisa ditulis sebagai berikut

\[
U_2 - U_1 = 3 \\
U_3 - U_2 = 3
\]
\[
U_4 - U_3 = 3 \\
\vdots \\
U_n - U_{n-1} = 3
\]

Suku berikutnya diperoleh dengan cara menambahkan 3 pada suku sebelumnya. Angka 3 ini selanjutnya disebut dengan \textit{beda}.

Pada barisan aritmetika tersebut, diketahui bahwa suku pertama adalah 4, dan beda barisan aritmetika tersebut adalah 3, sehingga rumus suku ke-\(n\) adalah \(U_n = 4 + (n - 1) \times 3\).

Barisan bilangan \(U_1, U_2, U_3, \ldots, U_n\) disebut \textit{barisan aritmetika} jika selisih antara dua suku yang berurutan selalu tetap. Selisih antara dua suku yang berurutan disebut dengan \textit{beda}.

Secara umum, suatu barisan aritmetika dengan suku pertama \(U_1 = a\), dan beda antara dua suku yang berurutan adalah \(b\), maka suku ke-\(n\) barisan aritmetika tersebut adalah \(U_n = a + (n - 1) \times b\).

\begin{itemize}
 \item \textbf{Tahukah Kamu?}
 \begin{itemize}
 \item Barisan aritmetika disebut barisan aritmetika naik jika suku-sukunya makin besar, dengan kata lain beda pada barisan aritmetika adalah positif.
 \item Barisan aritmetika disebut barisan aritmetika turun jika suku-sukunya makin kecil, dengan kata lain beda pada barisan aritmetika adalah negatif.
 \end{itemize}
\end{itemize}

\section*{B. Barisan Geometri}

Coba siswa perhatikan kembali hasil yang telah siswa dapatkan pada Tabel 2.6. Suku-suku pada barisan bilangan tersebut ditulis secara berurutan seperti di bawah ini

\begin{center}
\begin{array}{cccccc}
2 & 4 & 8 & 16 & 32 & \ldots \\
\times 2 & \\
\end{array}
\end{center}

Terlihat bahwa perbandingan antar dua suku berurutan adalah 2, atau bisa dituliskan:

\[
\frac{U_2}{U_1} = 2 \\
\frac{U_3}{U_2} = 2
\]
Suku berikutnya diperoleh dengan cara mengalikan suku sebelumnya dengan 2. Angka 2 ini selanjutnya disebut dengan pembanding/rasio.

Pada barisan geometri tersebut, diketahui bahwa suku pertama adalah 2, dan rasio dari barisan tersebut adalah 2, maka rumus suku ke-n adalah $U_n = 2 	imes 2^{n-1}$

Barisan bilangan $U_1, U_2, U_3, \ldots, U_n$ disebut barisan geometri jika perbandingan antara dua suku yang berurutan selalu tetap. Nilai perbandingan antara dua suku yang berurutan pada barisan geometri disebut dengan pembanding/rasio.

Secara umum, suatu barisan geometri dengan suku pertama $U_1 = a$, dan perbandingan/rasio antara dua suku yang berurutan adalah r, maka suku ke-n barisan geometri tersebut adalah $U_n = a \times r^{n-1}$

Tahukah Kamu?

Barisan geometri disebut barisan geometri naik jika suku-sukunya makin besar, dengan kata lain rasio pada barisan geometri lebih dari 1.

Barisan geometri disebut barisan geometri turun jika suku-sukunya makin kecil, dengan kata lain rasio pada barisan geometri kurang dari 1.

Contoh 2.3

Suku-suku pada Barisan Bilangan Genap

- Pada Contoh 2.3, siswa diminta untuk mengamati barisan bilangan genap. Kemudian siswa diminta untuk menuliskan 5 suku pertama pada barisan bilangan genap dan menentukan suku ke-57 dengan menggunakan rumus yang ada.
- Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan barisan bilangan yang telah dipelajari sebelumnya.

Contoh 2.3

Suku-suku pada Barisan Bilangan Genap

Tuliskan 5 suku pertama pada barisan bilangan genap dan tentukan suku ke-57!

Alternatif Penyelesaian:

Diketahui:

Suatu barisan bilangan genap dengan
suku pertama $a = 2$
beda $b = 2$

Ditanya:
5 suku pertama dan suku ke-57

Jawab:
Suku pertama pada barisan bilangan genap adalah 2, atau bisa ditulis dengan $U_1 = 2$. Suku berikutnya pada barisan bilangan genap dapat diperoleh dengan menambahkan 2 pada suku sebelumnya, sehingga beda pada barisan tersebut adalah 2. Sehingga keempat suku berikutnya adalah $U_2 = 4$, $U_3 = 6$, $U_4 = 8$, $U_5 = 10$.

Dari $a = 2$ dan $b = 2$, maka kita bisa dapatkan nilai dari U_{57} yaitu

$$U_n = a + (n - 1) \times b$$

$$U_{57} = a + (57 - 1) \times b$$
$$= 2 + 56 \times 2$$
$$= 2 + 112$$
$$= 114$$

Jadi suku ke-57 pada barisan bilangan genap adalah 114.

Contoh 2.4 Suku-suku pada Barisan Bilangan Genap

- Pada Contoh 2.4, siswa diminta menentukan panjang sisi siku-siku terpendek dari suatu segitiga siku-siku yang diketahui panjang sisi miringnya saja. Soal ini merupakan salah satu aplikasi dari barisan aritmatika.
- Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan aplikasi barisan aritmatika dalam kehidupan sehari-hari.

Contoh 2.4 Sisi-sisi pada Segitiga Siku-siku

Sisi-sisi dari suatu segitiga siku-siku membentuk barisan aritmetika. Jika panjang sisi miringnya adalah 40 cm, maka tentukan panjang sisi siku-siku yang terpendek!

Alternatif Penyelesaian:
Diketahui:
- Suatu segitiga siku-siku memiliki sisi miring dengan panjang 40 cm.

Gambar 2.15 Sisi-sisi segitiga siku-siku
- Ketiga sisi segitiga siku-siku membentuk suatu barisan aritmetika dengan beda sebesar b.

Ditanya:
Panjang sisi siku-siku terpendek

Jawab:

Langkah 1: Tuliskan sisi-sisi segitiga dalam bentuk barisan aritmetika
Coba siswa perhatikan gambar segitiga siku-siku di samping. Kita bisa tuliskan panjang sisi-sisinya sesuai dengan bentuk barisan aritmetika sebagai berikut:

$U_1 = 40 - 2b$
$U_2 = 40 - b$
$U_3 = 40$

Langkah 2: Gunakan teorema Phytagoras
Dengan menggunakan teorema phytagoras diperoleh persamaan berikut:

$40^2 = (40 - 2b)^2 + (40 - b)^2$
$1.600 = (1.600 - 160b + 4b^2) + (1.600 - 80b + b^2)$
$1.600 = 3.200 - 240b + 5b^2$

Langkah 3: Selesaikan bentuk persamaan kuadrat untuk memperoleh nilai b
Selesaikan bentuk persamaan kuadrat yang telah kita peroleh dengan cara mengurangkan kedua ruas dengan 1.600, sehingga didapatkan:

$0 = 5b^2 - 240 + 1.600$

Persamaan di atas bisa kita jabarkan dan tuliskan kembali menjadi

$(5b - 40)(b - 40) = 0$

Didapatkan penyelesaianya adalah $b = 8$ atau $b = 40$, akan tetapi nilai $b = 40$ tidak memenuhi, karena ketika substitusikan nilai ini ke dalam barisan aritmetika akan diperoleh nilai -40 dan 0 pada panjang sisi segitiga, sedangkan panjang dari segitiga tidak mungkin bernilai negatif maupun 0.
Dari penjelasan tersebut kita dapatkan nilai beda $b = 8$.

Langkah 4: Substitusikan nilai b ke dalam tiap suku barisan aritmetika
Substitusikan nilai ini pada barisan aritmetika yang telah kita definisikan di atas, sehingga diperoleh:
$U_1 = 40 - 2b = 40 - 2(8) = 40 - 16 = 24$

$U_2 = 40 - b = 40 - 8 = 32$

$U_3 = 40$

Jadi panjang sisi siku-siku yang terpendek pada segitiga siku-siku tersebut adalah 24 cm.

Ayo Kita Menalar

Dengan prosedur yang hampir sama dengan Contoh 2.4 di atas, dapatkan panjang sisi miring dari suatu segitiga siku-siku jika diketahui panjang sisi tegak yang merupakan sisi terpendek adalah 6 cm dan sisi-sisi dari segitiga tersebut juga membentuk suatu barisan aritmetika! Jelaskan secara singkat langkah-langkah penyelesaiannya!

Contoh 2.5

Pertumbuhan Jumlah Penduduk

- Pada Contoh 2.5, siswa diminta menentukan jumlah penduduk di kota A pada tiap tahun, mulai tahun 2015 hingga tahun 2020 dari data yang diketahui.
- Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan aplikasi barisan geometri dalam kehidupan sehari-hari.

Kota A memiliki populasi sebanyak 100.000 jiwa pada bulan Januari 2015. Pemerintah kota tersebut bertekad untuk meningkatkan semua sarana dan prasarana di kota A sehingga jumlah penduduk di kota A bisa mengalami peningkatan tetap sebesar 20% setiap tahunnya.

Berapakah jumlah penduduk kota A pada bulan Januari 2020?

Buatlah grafik pertumbuhan jumlah penduduk kota A dari bulan Januari 2015 sampai dengan Januari 2020!

Alternatif Penyelesaian:

Diketahui:

- Populasi awal kota A pada Januari 2015 adalah $a = 100.000$
- Peningkatan penduduk kota A tiap tahun adalah tetap sebesar 20% = 0,2
Ditanya:

Jumlah penduduk kota A pada Januari 2020 dan grafik pertumbuhan penduduk

Jawab:

Langkah 1: Tentukan rasio pertumbuhan penduduk \(r \)

Pertumbuhan jumlah penduduk merupakan salah satu aplikasi dari barisan geometri naik. Diketahui bahwa setiap tahunnya terjadi peningkatan tetap pada jumlah penduduk kota A sebesar 20% , sehingga pada tahun berikutnya jumlah seluruh penduduk kota A akan menjadi 120% dari populasi yang ada pada tahun saat ini.

Dengan demikian maka tiap tahunnya jumlah penduduk kota A akan menjadi 1,2 kali jumlah penduduk pada tahun ini, sehingga rasio pertumbuhan penduduk kota A adalah \(r = 1,2 \).

Langkah 2: Gunakan \(r \) untuk mendapatkan suku berikutnya

Populasi awal penduduk pada Januari 2015 adalah \(a = 100.000 \), dengan menggunakan perhitungan maka didapatkan:

Populasi penduduk kota A pada bulan Januari 2016 hingga bulan Januari 2020 masing-masing dinyatakan dengan \(U_2, U_3, U_4, U_5, \) dan \(U_6 \).

\[
\begin{align*}
U_2 &= ar = 100.000 \times 1,2 = 120.000 \\
U_3 &= ar^2 = 100.000 \times (1,2)^2 = 144.000 \\
U_4 &= ar^3 = 100.000 \times (1,2)^3 = 172.800 \\
U_5 &= ar^4 = 100.000 \times (1,2)^4 = 207.360 \\
U_6 &= ar^5 = 100.000 \times (1,2)^5 = 248.832
\end{align*}
\]

Berikut ini adalah tabel yang menunjukkan pertumbuhan penduduk kota A dari Januari 2015 sampai dengan Januari 2020:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah Penduduk</td>
<td>100.000</td>
<td>120.000</td>
<td>144.000</td>
<td>172.800</td>
<td>207.360</td>
<td>248.832</td>
</tr>
</tbody>
</table>

Gambar di bawah ini menunjukkan grafik pertumbuhan jumlah penduduk kota A dari bulan Januari 2015 sampai dengan Januari 2020:
Sumber: Dokumentasi Kemdikbud
Gambar 2.17 Grafik pertumbuhan penduduk kota A

Ayo Kita Tinjau Ulang

- Pada bagian tinjau ulang siswa diminta untuk mengingat dan mengulang kembali materi yang telah dipelajari pada bab barisan bilangan.
- Minta siswa untuk mengerjakan soal secara mandiri.
- Minta perwakilan siswa untuk menuliskan jawabannya di papan tulis.
- Minta siswa untuk menukarkan jawaban dengan teman sebangku dan mencocokkan semua jawaban.
- Berikan kesempatan kepada siswa untuk berdiskusi dan bertanya. Berikan penjelasan singkat jika ada siswa yang belum memahami materi.
- Berikan penilaian pada tiap siswa berdasarkan jawaban mereka masing-masing.

Perhatikan kembali konsep mengenai suku ke-n pada barisan aritmetika dan barisan geometri yang telah dijelaskan sebelumnya. Minta siswa memahami lagi.

1. Sebutkan ciri utama dari barisan aritmetika dan barisan geometri.
2. Diketahui barisan bilangan 3, 7, 11, 15, 19, … Tentukan:
 a. Suku ke-10 dan suku ke-25
 b. Rumus suku ke-n
 c. Suku ke berapa yang nilainya adalah 131?
1. Lakukan penilaian sikap saat siswa melakukan kegiatan Diskusi dan Berbagi.
2. Lakukan penilaian pengetahuan saat siswa mengerjakan kegiatan Ayo Kita Menalar.
3. Indikator semua siswa sudah menguasai konsep adalah ketika siswa kelompok rendah sudah mampu menguasai konsep.
4. Minta siswa untuk mengerjakan soal Latihan 2.2 dengan mandiri.
5. Lakukan kegiatan pembelajaran pengayaan dan remedial.

Latihan 2.2
Barisan Bilangan

1. Tentukanlah lima suku pertama dari barisan bilangan berikut ini!
 a. \(U_n = n^2 + 2 \)
 b. \(U_n = 3n - 2 \)
 c. \(U_n = \frac{1}{2}(n^2 - 1) \)
 d. \(U_n = n + 5 \)

Penyelesaian:
 a. 3, 6, 11, 18, 27
 b. 1, 4, 7, 10, 13
 c. 0, \(\frac{3}{2} \), 4, \(\frac{15}{2} \), 12
 d. 6, 7, 8, 9, 10

2. Dapatkan selisih antar suku yang berurutan dan suku ke–15 dari tiap-tiap barisan bilangan berikut ini:
 a. 1, 8, 15, 22, …
 b. 9, 7, 5, 3, …
 c. 2, 5, 8, 11, …
 d. 6, 3, 0, -3, -6, …

Penyelesaian:
 a. Selisih antar suku adalah 7, suku ke-15 adalah 99
 b. Selisih antar suku adalah -2, suku ke-15 adalah -19
 c. Selisih antar suku adalah 3, suku ke-15 adalah 44
 d. Selisih antar suku adalah -3, suku ke-15 adalah -36

3. Dapatkan perbandingan antar suku berurutan dan suku ke–8 dari tiap-tiap barisan bilangan berikut ini:
 a. 64, -96, 144, -216, …
 b. \(\frac{2}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{12}, … \)
 c. \(xy, x^2y, x^3y, x^4y, … \)
 d. \(\frac{7}{3}, \frac{1}{3}, \frac{3}{7}, \frac{9}{49}, … \)

Penyelesaian:
 a. 64, -96, 144, -216, …
 b. 64, -96, 144, -216, …
 c. \(xy, x^2y, x^3y, x^4y, … \)
 d. \(\frac{7}{3}, \frac{1}{3}, \frac{3}{7}, \frac{9}{49}, … \)
Penyelesaian:

a. Perbandingan antar suku adalah \(\frac{3}{2} \), suku ke-8 adalah \(\frac{2.187}{2} \).

b. Perbandingan antar suku adalah \(\frac{1}{2} \), suku ke-8 adalah \(\frac{1}{192} \).

c. Perbandingan antar suku adalah \(x \), suku ke-8 adalah \(x^8y \).

d. Perbandingan antar suku adalah \(\frac{3}{7} \), suku ke-8 adalah \(\left(\frac{3}{7} \right)^6 \).

4. Tentukan suku ke-10 dan suku ke-\(n \) \((U_n) \) dari barisan bilangan berikut!
 a. 2, 11, 20, 29, …
 b. 2, 8, 32, 128, …
 c. 19, 13, 7, 1, …
 d. \(ab^2, a^2b^3, a^3b^4, a^4b^5, \ldots \)

Penyelesaian:

a. Suku ke-10 adalah 83, suku ke-\(n \) adalah \(9^{n-1} \).

b. Suku ke-10 adalah \(2 \times (4)^9 \), suku ke-\(n \) adalah \(2 \times (4)^{n-1} \).

c. Suku ke-10 adalah -35, suku ke-\(n \) adalah \(25 - 6n \).

d. Suku ke-10 adalah \(a^{10}b^{11} \), suku ke-\(n \) adalah \(a^n b^{n+1} \).

5. \textbf{Perkembangbiakan Bakteri}. Seorang peneliti melakukan pengamatan pada perkembangbiakan sebuah bakteri di dalam sebuah preparat. Pada hari awal pengamatan, diketahui bahwa jumlah bakteri yang terdapat di dalam preparat adalah 10. Setiap 24 jam, masing-masing bakteri membelah diri menjadi dua. Apabila setiap 120 jam sekali setengah dari seluruh bakteri yang ada dibunuh, maka tentukan banyaknya virus setelah 12 hari dari awal pengamatan!

\textbf{Penyelesaian:}

Banyaknya bakteri pada awal pengamatan adalah 10. Setiap 24 jam (1 hari), tiap-tiap bakteri membelah menjadi 2, sehingga banyaknya bakteri tiap harinya adalah 2 kali lipat dari hari sebelumnya. Banyaknya bakteri pada hari kelima dari awal pengamatan adalah 320 bakteri. Akan tetapi setengah dari total bakteri tersebut dimatikan, sehingga pada hari kelima banyaknya bakteri yang masih tersisa adalah 160 bakteri. Setelah 10 hari dari awal pengamatan jumlah bakteri menjadi 5.120 bakteri. Akan tetapi setengah dari total bakteri tersebut dimatikan, sehingga pada hari kesepuluh banyaknya bakteri yang masih tersisa adalah 2.560 bakteri.
Setelah hari keduabelas dari awal pengamatan, banyaknya bakteri yang ada di dalam preparat adalah 10.240 bakteri.

Penyelesaian:

7. **Membagi Uang.** Ibu Cathy ingin membagikan uang sebesar Rp 200.000,00 kepada 5 orang anaknya. Semakin tua usia anak, maka semakin banyak uang yang akan dia terima. Jika selisih uang yang diterima oleh setiap dua orang anak yang usianya berdekatan adalah Rp10.000,00 dan si bungsu menerima uang paling sedikit, maka tentukan uang yang diterima oleh anak ketiga!

Penyelesaian:
Misalkan jumlah uang yang diterima anak yang paling kecil adalah x. Jumlah uang yang diterima 2 anak yang usianya berdekatan adalah Rp10.000,00. Lakukan perhitungan dengan menggunakan rumusan pada barisan bilangan, maka didapatkan jumlah uang yang diperoleh anak terkecil adalah Rp20.000,00. Jumlah uang yang diperoleh anak ketiga adalah Rp40.000,00.

8. **Gaji Karyawan.** Pada suatu perusahaan, semua karyawannya memperoleh gaji awal yang besarnya sama ketika pertama kali masuk ke dalam perusahaan. Gaji tersebut akan meningkat dengan persentase yang tetap setiap tahunnya, sehingga karyawan yang lebih dahulu bekerja pada perusahaan tersebut akan menerima gaji yang lebih besar daripada karyawan yang baru masuk. Apabila gaji Sasha yang telah bekerja selama dua tahun adalah Rp4.000.000,00 dan gaji Winda yang telah bekerja selama tiga tahun adalah Rp5.000.000,00, berapakah gaji karyawan di perusahaan tersebut saat pertama kali masuk?

Penyelesaian:
Misalkan gaji saat pertama kali masuk perusahaan tersebut adalah x, dan misalkan besar persentase kenaikan gaji tiap tahunnya adalah y. Lakukan perhitungan dengan menggunakan rumusan pada barisan bilangan, diperoleh nilai x adalah
2.560.000 dan y adalah $\frac{5}{4}$. Dengan demikian besar gaji karyawan saat pertama kali masuk adalah Rp2.560.000.00.

9. **Soal Tantangan.** Jika diketahui t, u, v, dan w adalah bilangan asli, buktikan sifat-sifat yang berlaku pada barisan aritmetika di bawah ini.

 a. Jika u, v, dan w adalah tiga suku yang berurutan pada suatu barisan aritmetika, maka akan berlaku : $2v = u + w$

 b. Jika t, u, v, w adalah empat suku yang berurutan pada suatu barisan aritmetika, maka berlaku sifat : $u + v = t + w$

Penyelesaian:

 a. Misalkan barisan aritmetika tersebut mempunyai beda b maka $v = u + b$ dan $w = u + 2b$ sehingga

 \[2v = u + w \]

 \[2(u + b) = u + (u + 2b) \]

 \[2u + 2b = 2u + 2b \]

 b. Misalkan barisan aritmetika tersebut mempunyai beda b maka $u = t + b$, $v = t + 2b$ dan $w = t + 3b$ sehingga

 \[u + v = t + w \]

 \[(t + b) + (t + 2b) = t + (t + 3b) \]

 \[2t + 3b = 2t + 3b \]

10. **Soal Tantangan.** Jika diketahui t, u, v, dan w adalah bilangan asli, buktikan sifat-sifat yang berlaku pada barisan geometri di bawah ini.

 a. Jika u, v, dan w adalah tiga suku yang berurutan pada suatu barisan geometri, maka akan berlaku sifat : $v^2 = uw$

 b. Jika t, u, v, w adalah empat suku yang berurutan pada suatu barisan geometri, maka berlaku sifat : $uv = tw$

Penyelesaian:

 a. Misalkan barisan geometri tersebut mempunyai rasio r maka $v = ur$ dan $w = ur^2$ sehingga

 \[v^2 = uw \]

 \[(ur)^2 = u.ur^2 \]

 \[u^2r^2 = u^2r^2 \]

 b. Misalkan barisan geometri tersebut mempunyai rasio r maka $u = tr$, $v = tr^2$ dan $w = tr^3$ sehingga

 \[u.v = t.w \]

 \[(tr).(tr^2) = t.(tr^3) \]

 \[t^2r^3 = t^2r^3 \]
C. Deret Bilangan

Pertanyaan Penting

- Minta siswa untuk mengamati kembali contoh-contoh barisan bilangan yang telah dipelajari pada subbab B.
- Pancing siswa dengan memberikan pertanyaan tentang rumus untuk menentukan jumlah beberapa suku pertama dari suatu barisan bilangan.

Apa yang dimaksud dengan deret bilangan? Untuk mengetahui jawabannya coba lakukan kegiatan-kegiatan berikut ini.

Kegiatan 2.8 Menabung

1. Kegiatan ini dilakukan secara mandiri oleh tiap-tiap siswa.
4. Pada bagian ayo kita mencoba, minta siswa untuk mengamati jumlah uang yang ditabung oleh Nita tiap minggunya dan jumlah total uang tabungan Nita tiap minggunya, kemudian menuliskan hasil pengamatan pada Tabel 2.7.
5. Pada bagian ayo kita menalar, minta siswa untuk mengerjakan secara mandiri soal-soal yang ada.
6. Pada bagian diskusi dan berbagi, minta siswa berdiskusi dengan teman sebangkunya untuk menjawab soal di bagian diskusi dan berbagi.
7. Minta siswa untuk menyimpulkan hasil dari kegiatan yang telah mereka lakukan pada bagian ayo kita simpulkan.
8. Minta salah satu perwakilan siswa untuk memaparkan jawabannya di depan kelas.
9. Berikan kesempatan kepada siswa untuk bertanya dan berikan penjelasan secukupnya bagi siswa yang belum memahami materi dengan baik.
Menabung

Setiap akhir minggu Nita selalu menyisihkan uang saku yang ia dapatkan untuk ditabung. Ia bertekad untuk dapat menabung uang lebih banyak pada minggu-minggu berikutnya. Pada akhir minggu pertama Nita menabung sebesar Rp1.000,00, akhir minggu kedua ia menabung sebesar Rp2.000,00, akhir minggu ketiga ia menabung sebesar Rp3.000,00, begitu seterusnya ia selalu menabung Rp1.000,00 lebih banyak dari minggu sebelumnya. Perhatikan jumlah uang yang ditabung oleh Nita setiap akhir minggunya.

<table>
<thead>
<tr>
<th>Akhir Minggu ke-</th>
<th>Uang yang Ditabung</th>
<th>Total Tabungan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>2.000</td>
<td>3.000</td>
</tr>
<tr>
<td>3</td>
<td>3.000</td>
<td>6.000</td>
</tr>
<tr>
<td>4</td>
<td>4.000</td>
<td>10.000</td>
</tr>
<tr>
<td>5</td>
<td>5.000</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
a. Dapatkan siswa menghitung jumlah uang yang ditabung Nita pada akhir minggu ke-15 dan akhir minggu ke-16? Berapakah jumlawnya?

b. Berapakah total uang tabungan Nita pada akhir minggu ke-20?

c. Bagaimana cara m d e n t u n k a n h a l s i p a d a (b)? Jelaskan.

d. Berapakah total uang tabungan Nita pada akhir minggu ke-25?

e. Bagaimana cara m d e n t u n k a n h a l s i p a d a (d) jika melibatkan (b)?

Minta siswa membuat pertanyaan yang berkaitan dengan kegiatan yang telah dilakukan di atas. Berikut adalah salah satu contoh pertanyaan: Bagaimana hubungan antara uang yang ditabung oleh Nita dengan uang total tabungan Nita pada tiap akhir minggu?

Informasi Utama

Seperti yang telah dijelaskan pada bab barisan bilangan, dapat dilihat bahwa uang yang ditabung oleh Nita pada tiap akhir minggu membentuk suatu barisan bilangan. Banyaknya uang yang ditabung oleh Nita pada tiap akhir minggu menyatakan suku dari barisan bilangan tersebut. Total uang tabungan Nita tiap akhir minggu menyatakan jumlah dari beberapa suku pertama dari barisan bilangan tersebut, yang selanjutnya disebut dengan deret bilangan. Jumlah n suku pertama dari suatu barisan bilangan disimbolkan dengan S_n. Dalam hal ini $S_2 = 3.000$ menyatakan jumlah 2 suku pertama dari barisan bilangan tersebut. $S_3 = 6.000$ dan $S_4 = 10.000$ masing-masing menyatakan jumlah 3 suku pertama dan jumlah 4 suku pertama dari barisan bilangan tersebut.
Ayo Kita Simpulkan

- Jumlah \(n \) suku pertama dari suatu barisan bilangan disimbolkan dengan …
- Apakah yang dimaksud dengan deret bilangan? Jawablah dengan menggunakan kata-katamu sendiri.

Kegiatan 2.9

Penjumlahan Suku-suku pada Barisan Bilangan Genap

1. Kegiatan ini dilakukan secara mandiri oleh tiap-tiap siswa.
5. Minta siswa untuk menjumlahkan 4 suku pertama pada barisan bilangan genap dengan mengikuti alur yang terdapat pada bagian ayo kita menalar.
7. Minta siswa berdiskusi dengan teman sebangkunya untuk menjawab soal di bagian diskusi dan berbagi.
8. Minta salah satu perwakilan siswa untuk memaparkan jawabannya di depan kelas.
9. Berikan kesempatan kepada siswa untuk bertanya dan berikan penjelasan secukupnya bagi siswa yang belum memahami materi dengan baik.

Ayo Kita Mencoba

Minta siswa menuliskan jumlah uang yang ditaruh serta jumlah total uang tabungan Nita setiap akhir minggunya dengan melengkapi tabel di bawah ini!
Tabel 2.8 Jumlah beberapa suku pertama pada barisan bilangan genap

<table>
<thead>
<tr>
<th>Suku ke-</th>
<th>Nilai</th>
<th>Jumlah Suku</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2 + 4 = 6</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2 + 4 + 6 = 12</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2 + 4 + 6 + 8 = 20</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

a. Berapakah jumlah 8 suku pertama dari barisan bilangan genap tersebut?
b. Berapakah jumlah 10 suku pertama dari barisan bilangan genap tersebut?
c. Bagaimana cara menentukan (b) dengan melibatkan (a)?

Ayo Kita Mencoba

Jika jumlah \(n \) suku pertama dinotasikan dengan \(S_n \), maka \(S_4 \) menyatakan jumlah 4 suku pertama dari suatu barisan. Sekarang minta siswa menjumlahkan 4 suku pertama dari barisan bilangan genap.

\[
S_4 = 2 + \ldots + \ldots + \ldots \quad (i)
\]

Berikutnya jumlahkan 4 suku pertama dari bilangan genap di atas dengan cara menulisikan bentuk penjumlahan di atas dalam urutan terbalik

\[
S_4 = \ldots + \ldots + \ldots + 2 \quad (ii)
\]

Coba jumlahkan (i) dan (ii) melalui langkah-langkah berikut ini dengan cara mengisi bagian yang kosong
\[S_4 = 2 + \ldots + 2 \]
\[S_4 = \ldots + \ldots + 2 \]
\[2S_4 = 10 + \ldots + \ldots \]

4 suku

\[
= (2 + 8) + (2 + 8) + (2 + 8) + (2 + 8)
\]
\[2S_4 = \ldots \times (\ldots + \ldots) \]
\[S_4 = \frac{\ldots \times (\ldots + \ldots)}{2} \quad \text{(iii)} \]

Ayo Kita Menalar

Minta siswa memperhatikan kembali langkah-langkah dalam menghitung \(S_4 \) pada barisan bilangan genap di atas sehingga didapatkan hasilnya seperti pada (iii). Perhatikan nilai yang terdapat pada bagian di dalam tanda kurung. Jawablah pertanyaan di bawah ini:

a. Berapakah dari suku pertama pada barisan bilangan genap?
b. Jika menghitung jumlah 4 suku pertama dari barisan bilangan genap, suku manakah yang menjadi suku terakhir dalam perhitungan tersebut?
c. Berapakah suku terakhir dalam penjumlahan 4 suku pada barisan bilangan genap?
d. Siswa telah menjumlahkan 4 suku pertama dari barisan bilangan genap, menurutmu angka 4 pada bagian (iii) menunjukkan informasi apa?

Ayo Kita Simpulkan

Jumlah 4 suku pertama pada barisan bilangan genap disimbolkan dengan … Bilangan … pada bagian (iii) menunjukkan suku ke-1 dari barisan bilangan genap, sedangkan angka … menunjukkan suku ke-4 dari barisan bilangan genap. Penjumlahan suku-suku pertama dari barisan bilangan genap, selanjutnya disebut dengan deret bilangan genap.

Diskusi dan Berbagi

Berapakah jumlah 15 suku pertama barisan bilangan genap tersebut? Temukan cara tercepat tanpa perlu menjumlahkan satu persatu semua sukunya. Perhatikan
Informasi Utama

Misalkan dalam suatu barisan aritmetika, suku pertama \(U_1 = a \), dan beda pada barisan aritmetika tersebut adalah \(b \). Maka suku ke-2, ke-3, ke-4, ke-5, ke-6, dan ke-\(n \) dapat dituliskan dalam bentuk:

\[
\begin{align*}
U_2 &= a + b \\
U_3 &= a + 2b \\
U_4 &= a + 3b \\
U_5 &= a + 4b \\
U_6 &= a + 5b \\
\vdots \\
U_n &= a + (n - 1)b
\end{align*}
\]

Secara umum jumlah \(n \) suku pertama pada barisan aritmetika dapat dituliskan sebagai berikut:

\[
S_n = a + (a + b) + (a + 2b) + \ldots + (a + (n - 2) \times b) + (a + (n - 1) \times b)
\]

(i)

Bentuk penjumlahan di atas jika ditulis dalam urutan terbalik, di mana suku terakhir yang berada pada posisi paling depan dan sebaliknya, maka (i) akan menjadi bentuk di bawah ini:

\[
S_n = (a + (n - 1) \times b) + (a + (n - 2) \times b) + \ldots + (a + 2b) + (a + b) + a
\]

(ii)

Berikutnya jumlahkan (i) dan (ii), sehingga didapatkan bentuk di bawah ini:

\[
\begin{align*}
2S_n &= (a + (a + b) + (a + 2b) + \ldots + (a + (n - 2) \times b) + (a + (n - 1) \times b) \\
&\quad + (a + (n - 1) \times b) + (a + (n - 2) \times b) + \ldots + (a + 2b) + (a + b) + a) + \ldots + (a + a + (n - 1) \times b) + \ldots + (a + a + (n - 1) \times b)
\end{align*}
\]

\[
2S_n = (a + a + U_n) + (a + a + U_n) + \ldots + (a + a + U_n)
\]

4 suku

\[
2S_n = n \times (a + U_n)
\]

\[
S_n = \frac{n \times (a + U_n)}{2}
\]
Ayo Kita Simpulkan

Dari Informasi Utama di atas, kesimpulan apa yang siswa peroleh?

Jika … menunjukkan banyaknya suku dari suatu barisan aritmetika, … menunjukkan suku pertama, … menunjukkan suku ke-\(n\) dari barisan aritmetika, maka rumus jumlah \(n\) suku pertama dari barisan aritmetika yang disimbolkan dengan … adalah …

Ayo Kita Menalar

Dengan menggunakan rumus \(U_n = a + (n - 1)b\), buktikan bahwa jumlah \(n\) suku pertama dari deret aritmetika dapat dituliskan sebagai berikut

\[
\frac{n}{2} (2a + (n - 1)b)
\]

Kegiatan 2.10 Koleksi Kelereng

1. Kegiatan ini dilakukan secara mandiri oleh tiap-tiap siswa.
2. Minta siswa untuk membaca dan memahami keterangan yang diberikan pada Kegiatan 2.10.
4. Minta siswa untuk mengerjakan secara mandiri soal pada ayo kita menalar
5. Minta siswa untuk menyimpulkan hasil dari kegiatan yang telah mereka lakukan pada bagian ayo kita simpulkan.
7. Berikan kesempatan kepada siswa untuk bertanya dan berikan penjelasan secukupnya bagi siswa yang belum memahami materi dengan baik.
Kegiatan 2.10

Ayo Kita Amati

Amin memiliki hobi mengumpulkan kelereng. Tiap akhir minggu ia selalu membeli kelereng untuk dikoleksi. Pada akhir minggu pertama, ia membeli sebanyak 3 buah kelereng. Pada akhir minggu kedua ia membeli lagi sebanyak 6 buah kelereng, dan pada akhir minggu ketiga ia membeli sebanyak 12 buah kelereng. Begitu seterusnya, tiap akhir minggu ia selalu membeli kelereng sebanyak 2 kali lipat dari akhir minggu sebelumnya.

Sumber: http://www.bimbingan.org
Gambar 2.21 Kelereng

Perhatikanlah jumlah kelereng yang dibeli oleh Amin setiap akhir minggunya. Coba siswa tulislah jumlah kelereng yang dibeli serta jumlah total kelereng yang dimiliki oleh Amin setiap akhir minggunya dengan melengkapi tabel di bawah ini. Total kelereng yang dimiliki Amin setiap akhir minggunya selanjutnya disebut dengan jumlah kelereng.

Tabel 2.9 Jumlah kelereng yang dibeli serta total kelereng milik Amin

<table>
<thead>
<tr>
<th>Minggu ke-</th>
<th>Kelereng yang dibeli</th>
<th>Jumlah Kelereng</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3 + 6 = 9</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3 + 6 + 12 = 21</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>3 + 6 + 12 + 24 = 45</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

a. Berapakah banyak total kelereng yang dimiliki oleh Amin pada akhir minggu ke-6 dan akhir minggu ke-8?
b. Apakah siswa dapat menebak banyak total kelereng Amin pada akhir minggu ke-11? Berapa jumlahnya?

c. Apakah banyaknya kelereng yang dibeli Amin antara dua minggu yang berurutan memiliki perbandingan yang tetap?

Ayo Kita Mencoba

Jika jumlah n suku pertama dinotasikan dengan S_n, maka S_5 menyatakan jumlah 5 suku pertama dari suatu barisan. Sekarang jumlahkan 5 suku pertama dari barisan bilangan yang menunjukkan banyaknya kelereng yang dibeli Amin tiap minggunya.

$S_5 = 3 + ... + ... + ... + ...$ \hspace{1cm} (i)

Berikutnya coba siswa kalikan masing-masing suku di dalam barisan bilangan tersebut dengan 2, sehingga didapatkan

$2S_5 = 2 \times 3 + 2 \times ... + 2 \times ... + 2 \times ... + 2 \times ...$

$2S_5 = 6 + ... + ... + ... + ...$ \hspace{1cm} (ii)

Coba kurangkan (ii) dengan (i) melalui langkah-langkah berikut ini dengan cara mengisi bagian yang kosong

$2S_5 = 6 + ... + ... + ... + ...$

$ S_5 = 3 + ... + ... + ... + ...$

$2S_5 - S_5 = ... - 3$

(Coba perhatikan tiap-tiap angka pada ruas kanan dari pengurangan $2S_5$ terhadap S_5, jika terdapat nilai yang sama maka siswa dapat mengurangkan secara langsung sehingga hasil pengurangannya menjadi 0)

$S_5(2 - 1) = ... - 3$

$S_5(2 - 1) = 3 \times 2 - 3$

$S_5(2 - 1) = 3 \times (2 - 1)$

$S_5 = \frac{3 \times (2 - 1)}{(2 - 1)}$ \hspace{1cm} (iii)

Ayo Kita Menalar

a. Perhatikan bilangan 3 pada (iii). Berapakah suku pertama dari barisan bilangan yang menunjukkan jumlah kelereng yang dibeli Amin tiap minggunya? Apa siswa dapat menarik suatu kesimpulan sederhana terkait hal ini?

b. Perhatikan bilangan 2 pada bagian atas (iii). Perhatikan pula bilangan 2 pada bagian bawah (iii). Berapakah perbandingan antar suku dari barisan bilangan yang menunjukkan jumlah kelereng yang dibeli Amin tiap minggunya? Apa siswa dapat menarik suatu kesimpulan sederhana terkait hal ini?

Ayo Kita Simpulkan

Dari Kegiatan 2.10 di atas, kesimpulan apa yang diperoleh siswa?

Jumlah 5 suku pertama pada barisan bilangan yang menunjukkan banyaknya kelereng yang dibeli oleh Amin tiap minggunya disimbolkan dengan ... Bilangan ... pada bagian (iii) menunjukkan suku pertama barisan bilangan, sedangkan bilangan ... menunjukkan perbandingan (rasio) antar suku yang berurutan dari barisan bilangan tersebut.

Informasi Utama

Misalkan dalam suatu barisan geometri, suku pertama \(U_1 = a \), dan rasio pada barisan geometri tersebut adalah \(r \). Maka suku ke-2, ke-3, ke-4, ke-5, ke-6, dan ke-\(n \) dapat dituliskan dalam bentuk:

\[
\begin{align*}
U_2 &= ar \\
U_3 &= ar^2 \\
U_4 &= ar^3 \\
U_5 &= ar^4 \\
U_6 &= ar^5 \\
&\vdots \\
U_n &= ar^{n-1}
\end{align*}
\]

Secara umum jumlah \(n \) suku pertama pada barisan geometri dapat dituliskan sebagai berikut:

\[
S_n = a + ar + ar^2 + ar^3 + ... + ar^{n-1}
\]
(i)

Kemudian kalikan (i) dengan \(r \), sehingga didapatkan hasil berikut ini.

\[
rS_n = ar + ar^2 + ar^3 + ... + ar^{n-1} + ar^n
\]
(ii)

Kurangkan (ii) dengan (i), dan dengan cara yang hampir sama dengan langkah-langkah ketika siswa menghitung jumlah 5 suku pertama dari barisan bilangan yang menunjukkan jumlah kelereng yang dibeli Amin tiap minggunya, maka didapatkan...
Ayo Kita Simpulkan

Dari Informasi Utama di atas, kesimpulan apa yang siswa peroleh?

Jika ... menunjukkan banyaknya suku dari suatu barisan geometri, ... menunjukkan suku pertama, ... menunjukkan rasio dari barisan geometri, maka rumus jumlah n suku pertama dari barisan geometri (disebut dengan deret geometri) yang disimbolkan dengan ... adalah ...

Materi Esensi

Deret Bilangan

- Materi esensi mengenai deret membahas deret aritmatika dan deret geometri beserta rumusnya.
- Berikan kesempatan kepada siswa untuk bertanya pada materi yang belum dipahami.
- Berikan bantuan kepada siswa yang masih mengalami kesulitan dalam memahami materi deret bilangan.

Materi Esensi

Deret Bilangan

Seperti yang telah dijelaskan pada pembahasan sebelumnya, kita dapat menulis suku-suku pada barisan bilangan sebagai \(U_1, U_2, U_3, ..., U_n \). Jika suku-suku pada barisan tersebut kita jumlahkan, maka bentuk penjumlahannya disebut dengan deret bilangan, dan dapat dituliskan sebagai \(U_1 + U_2 + U_3 + ... + U_n \).

A. Deret Aritmetika

Coba siswa perhatikan hasil yang telah siswa dapatkan pada Kegiatan 2.9. Deret bilangan genap tersebut dapat kita tuliskan dalam bentuk sebagai berikut:

\[
2 + 4 + 6 + 8 + 10 + ...
\]

\[
\begin{align*}
rS_n &= ar + ar^2 + ar^3 + ... + ar^{n-1} + ar^n \\
S_n &= a + ar + ar^2 + ar^3 + ... + ar^{n-1} \\
rS_n - S_n &= ar^n - a \\
S_n (r - 1) &= a(r^n - 1) \\
S_n &= \frac{a(r^n - 1)}{r - 1}
\end{align*}
\]
Jika jumlah n suku pertama dinotasikan dengan \(S_n \), maka \(S_4 \) dari deret di atas adalah

\[
\begin{align*}
S_4 &= 2 + 4 + 6 + 8 \\
S_4 &= 8 + 6 + 4 + 2 + 2 \\
2S_4 &= 10 + 10 + 10 + 10 + 10 \\
\end{align*}
\]

4 suku

\[
= (2 + 8) + (2 + 8) + (2 + 8) + (2 + 8)
\]

\[
2S_4 = 4(2 + 8)
\]

\[
S_4 = \frac{4(2 + 8)}{2}
\]

Perhatikan jumlah 4 suku pertama pada deret bilangan genap, yang disimbolkan dengan \(S_4 \). Angka 2 pada perhitungan tersebut menyatakan suku pertama dari barisan bilangan tersebut, sedangkan angka 8 merupakan suku ke-4. Deret bilangan genap termasuk ke dalam deret aritmetika.

Secara umum jumlah n suku pertama pada barisan aritmetika adalah:

\[
S_n = \frac{n(a + U_n)}{2}
\]

dengan n adalah banyak suku, \(a \) adalah suku pertama, dan \(U_n \) adalah suku ke-n.

B. Deret Geometri

Coba siswa perhatikan hasil yang telah siswa dapatkan pada Kegiatan 2.10. Jumlah dari kelereng Amin pada akhir minggu ke-n dapat dituliskan dalam bentuk deret sebagai berikut:

\[
3 + 6 + 12 + 24 + \ldots
\]

Deret bilangan tersebut termasuk ke dalam deret geometri. Suku pertama dari deret tersebut adalah 3, dan rasionya adalah 2. Jika jumlah n suku pertama dinotasikan dengan \(S_n \), maka \(S_5 \) dari deret di atas adalah:

\[
S_5 = 3 + 6 + 12 + 24 + 48
\]

(i)

Berikutnya kalikan (i) dengan 2 pada masing-masing ruas sehingga kita peroleh hasil sebagai berikut:

\[
2S_5 = 6 + 12 + 24 + 48 + 96
\]

(ii)

Selanjutnya kurangkan (ii) terhadap (i) sehingga didapatkan:

\[
2S_5 - S_5 = 96 - 3
\]

\[
S_5 = 3 + 6 + 12 + 24 + 48
\]
$S_3(2 - 1) = 3 \times 2^5 - 3$
$S_3(2 - 1) = 3 \times (2^5 - 1)$
$S_5 = \frac{3 \times (2^5 - 1)}{2 - 1}$

Perhatikan jumlah 5 suku pertama pada deret bilangan di atas, yang disimbolkan dengan S_5. Angka 3 di bagian depan dari pembilang pada perhitungan tersebut merupakan suku pertama deret geometri, sedangkan angka 2 pada perpangkatan di dalam tanda kurung dan pada penyebut merupakan rasio dari deret geometri tersebut. Angka 5 menunjukkan penjumlahan pada 5 suku pertama.

Secara umum jumlah n suku pertama pada barisan geometri adalah:

$$S_n = \frac{a(r^n - 1)}{r - 1} \text{ jika } r > 1 \text{ dan } S_n = \frac{a(1 - r^n)}{1 - r} \text{ jika } r < 1$$

dengan n adalah banyak suku, a adalah suku pertama, dan r adalah rasio dari deret geometri.

Contoh 2.6 Produksi Mobil

- Pada Contoh 2.6, siswa diminta untuk menentukan jumlah mobil yang diproduksi oleh sebuah pabrik dengan keterangan yang ada pada soal.
- Contoh soal ini bertujuan untuk mempermudah siswa dalam memahami aplikasi deret aritmatika dalam kehidupan sehari-hari. Guru dapat memberikan variasi contoh soal lainnya yang kreatif dan inovatif.

Contoh 2.6 Produksi Mobil

Pertambahan hasil produksi mobil pada suatu pabrik tiap bulannya mengikuti barisan aritmetika. Jika produksi mobil pada bulan pertama adalah 100 unit dan pada bulan ke-4 adalah 160 unit, berapa jumlah mobil yang diproduksi oleh pabrik pada tahun tersebut?

Alternatif Penyelesaian:

Diketahui:

- produksi bulan pertama (suku pertama) $a = 100$
- produksi bulan keempat (suku keempat) $U_4 = 160$

Sumber: http://teknologi.inilah.com

Gambar 2.22 Produksi mobil
Ditanya:
Jumlah mobil yang diproduksi pabrik dalam satu tahun (12 bulan) = S_{12}

Jawab:
Langkah 1: Dari a dan U_4, hitung nilai b
U_4 = a + 3b = 160, substitusikan nilai a = 100 ke dalam U_4 didapatkan
100 + 3b = 160
3b = 60
b = 20

Langkah 2: Dari a dan b hitung S_{12}

\[S_n = S_n = \frac{n}{2} (2a + (n-1)b) \]
\[S_{12} = \frac{12}{2} (2(100) + (12 - 1)20) \]
\[= 6 (200 + 220) \]
\[= 6 (420) \]
\[= 2.520 \]

Jadi jumlah mobil yang diproduksi pabrik pada tahun tersebut adalah sebanyak 2.520 unit.

Ayo Kita Menalar

a. Pada Contoh 2.6 di atas, siswa dapat menghitung S_{12} tanpa menghitung U_{12}. Apakah nilai U_{12} memang tidak dipergunakan untuk menghitung S_{12}? Jelaskan!

b. Pada Contoh 2.6 di atas, U_1 dari deret telah diketahui. Apakah mungkin mencari S_{12} apabila U_1 tidak diketahui, tetapi sebagai gantinya yang diketahui adalah U_2 dan suku U_4? Jelaskan alasanmu dan tuliskan secara detail bagaimana langkah-langkahnya!

Contoh 2.7 Potongan Kayu

- Pada Contoh 2.7, siswa diminta untuk menentukan panjang potongan kayu mula-mula jika diketahui jumlah potongan serta panjang potongan terpendek dan terpanjang.
- Contoh soal ini bermuara untuk memperdahud siswa dalam memahami aplikasi deret geometri dalam kehidupan sehari-hari. Guru dapat memberikan variasi contoh soal lainnya yang kreatif dan inovatif.
Contoh 2.7

Potongan Kayu

Pak Seno memiliki sepotong kayu. Kemudian ia memotongnya menjadi 6 bagian dengan mengikuti aturan deret geometri. Apabila potongan yang terpendek adalah 3 cm dan potongan yang terpanjang adalah 96 cm, berapakah panjang kayu Pak Seno mula-mula?

Alternatif Penyelesaian:

Diketahui:

Sepotong kayu dipotong menjadi 6 bagian dengan dengan

- potongan terpendek (suku pertama) \(a = 3 \)
- potongan terpanjang (suku keenam) \(U_6 = ar^5 = 96 \)

Ditanya:

Panjang kayu mula-mula = \(S_6 \)

Jawab:

Langkah 1: Dari \(a \) dan \(U_6 \), hitung nilai \(r \)

\[
\frac{U_6}{U_1} = \frac{ar^5}{a} = r^5 = \frac{96}{3} = 32
\]

dengan demikian didapatkan nilai \(r = 2 \)

Langkah 2: Dari \(a \) dan \(r \) hitung \(S_6 \)

\[
S_n = \frac{a(r^n - 1)}{(r - 1)}
\]

\[
S_6 = \frac{3(2^6 - 1)}{(2 - 1)} = \frac{3(63)}{1} = 189 \text{ cm}
\]

Jadi panjang kayu Pak Seno mula-mula adalah 189 cm.

Ayo Kita Menalar

Pada Contoh 2.7 di atas telah diketahui bahwa panjang kayu Pak Seno mula-mula sebelum dipotong adalah 189 cm. Di lain pihak, Pak Badu yang merupakan tetangga
Pak Seno, juga memiliki sepotong kayu dengan panjang adalah 9 cm lebih panjang dari potongan kayu Pak Seno mula-mula. Apabila Pak Badu ingin memotong kayu miliknya sejumlah 6 bagian dengan mengikuti aturan deret aritmetika, dan potongan kayu terpendeknya adalah 3 cm. Menurut siswa, lebih panjang mana antara potongan kayu terpanjang milik Pak Seno atau potongan kayu terpanjang milik Pak Badu? Jelaskan jawabannya!

Ayo Kita Tinjau Ulang

1. Pada bagian tinjau ulang siswa diminta untuk mengingat dan mengulang kembali materi yang telah dipelajari pada bab deret bilangan.

4. Minta siswa untuk menuliskan jawaban dengan teman sebangku dan mencocokkan semua jawaban.

Ayo Kita Tinjau Ulang

1. Jika U_n adalah suku ke-n dari barisan bilangan, dengan n adalah bilangan asli, buktikanlah bahwa:

 $$S_n - S_{n-1} = U_n$$

2. Buatlah langkah-langkah sederhana untuk mendapatkan S_{20} pada suatu deret bilangan apabila diketahui $U_1 = a$, $U_8 = a + 7b$ dan $U_{10} = a + 9b$, dengan a dan b adalah bilangan asli dan b menyatakan beda pada barisan bilangan tersebut. Jelaskan alasanmu!

Latihan 2.3 Deret Bilangan

1. Lakukan penilaian sikap saat siswa melakukan kegiatan Diskusi dan Berbagi.

2. Lakukan penilaian pengetahuan saat siswa mengerjakan kegiatan Ayo Kita Menalar.
3. Indikator semua siswa sudah menguasai konsep adalah ketika siswa kelompok rendah sudah mampu menguasai konsep.
4. Minta siswa untuk mengerjakan soal Latihan 2.3 dengan mandiri.
5. Lakukan kegiatan pembelajaran pengayaan dan remedial.

Latihan 2.3 Deret Bilangan

1. Tentukan jumlah 10 suku pertama dari barisan bilangan berikut ini:
 a. \(3 + 10 + 17 + 24 + ...\)
 b. \(38 + 33 + 28 + 23 + ...\)
 c. \(-5 + (-10) + (-15) + (-20) + ...\)
 d. \(\frac{1}{2} + 1 + 2 + 4 + ...\)
 e. \(3 + 2 + \frac{4}{3} + \frac{8}{9} + ...\)
 f. \(4 + 6 + 9 + \frac{27}{2} + ...\)

Penyelesaian:
 a. \(345\)
 b. \(155\)
 c. \(-275\)
 d. \(511\frac{1}{2}\)
 e. \(9 \left(1 - \left(\frac{2}{3}\right)^{10}\right)\)
 f. \(8 \left(\frac{3}{2}\right)^{10} - 1\)

2. Hitunglah \(n\) jika \(1 + 2 + 4 + 8 + ... + 2^{n-1} = 127\)

Penyelesaian:
 \(n = 7\)

3. Jika diketahui jumlah \(n\) suku pertama bilangan asli adalah 5.050, berapakah nilai \(n\)? Tentukan rumus untuk \(n\) bilangan asli pertama.

Penyelesaian:
Suku pertama adalah 1, selisih antar 2 suku berurutan adalah 1. Gunakan rumus pada deret bilangan, diperoleh \(n = 100\). Rumus untuk jumlah \(n\) bilangan asli pertama adalah \(S_n = \frac{n}{2} (1 + n)\)

4. Jika jumlah \(n\) suku pertama suatu barisan adalah \(4n^2 (n + 1)\), maka tentukan \(U_4\).

Penyelesaian:
 \(U_4 = S_4 - S_3\)
\[S_4 = 320 \text{ dan } S_3 = 144 \]
\[U_4 = 176 \]

 a. Pada sisi jalan yang sama, urutan keberapa rumah nomor 159?
 b. Pada sisi jalan yang sama, rumah nomor berapakah yang terletak pada urutan ke-25?

Penyelesaian:
 a. 9
 b. 191

6. Tentukan jumlah semua bilangan-bilangan bulat di antara 100 dan 300 yang habis dibagi 5 tetapi tidak habis dibagi 7!

Penyelesaian:
Jumlah bilangan bulat yang lebih besar dari 100 dan kurang dari 300, serta habis dibagi 5 adalah 7.800.

Jumlah bilangan bulat yang lebih besar dari 100 dan kurang dari 300, serta habis dibagi 5 dan 7 adalah 1.155.

Dengan demikian, jumlah bilangan bulat yang lebih besar dari 100 dan kurang dari 300, serta habis dibagi 5 tetapi tidak habis dibagi 7 adalah 6.645.

7. **Menjatuhkan Bola.** Sebuah bola dijatuhkan dari ketinggian 4 meter. Bola tersebut kemudian memantul dengan ketinggian sebesar 3 meter pada pantulan pertama. Setelah itu bola tersebut terus memantul dengan ketinggian sebesar \(\frac{3}{4} \) dari tinggi sebelumnya. Berapakah meter tinggi bola pada pantulan kedua, ketiga, keempat, dan kelima? (bulatkan sampai 2 angka desimal)

 a. Lengkapi tabel di bawah ini:

<table>
<thead>
<tr>
<th>Pantulan ke-</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinggi pantulan (meter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b. Gambarkan hasil yang siswa dapatkan di atas ke dalam bentuk grafik!
 c. Berapakah tinggi pantulan bola pada pantulan ke-6?
 d. Berapa meter total lintasan yang dilalui oleh bola tersebut apabila bola tersebut berhenti tepat saat pantulan keenam?
Penyelesaian:

a. Tinggi bola pada pantulan ke-1 sampai ke-5 berturut-turut adalah \(\frac{9}{4}, \frac{27}{16}, \frac{81}{64}, \frac{243}{256}, \text{dan} \frac{729}{1024} \).

b. \(\frac{2.187}{4.096} \) meter.

c. \(3 + 2\left(\frac{9}{4} + \frac{27}{16} + \frac{81}{64} + \frac{243}{256} + \frac{729}{1024} + \frac{2.187}{4.096}\right) \) meter.

8. **Menabung**. Ibu memiliki uang sebesar Rp240.000,00 dan ingin memberikan uang tersebut kepada Andi untuk ditabung. Namun ibu tidak memberikan uang tersebut secara langsung, melainkan secara bertahap. Pada hari pertama ibu memberi Andi uang sebesar Rp5.000,00, pada hari kedua ibu memberi Rina uang sebesar Rp6.000,00, begitu seterusnya uang yang diberikan oleh ibu bertambah sebesar Rp1.000,00 setiap harinya. Jika ibu ingin memberikan seluruh uang yang dipunyai kepada Andi, maka berapa hari Andi akan mendapatkan seluruh uang tersebut!

Penyelesaian:

20 hari.

9. **Turnamen Tennis**. Pada suatu kejuaraan dunia tennis total ada 2.048 peserta mengikuti turnamen tersebut untuk memperebutkan gelar juara peringkat 1 dunia. Sistem yang digunakan dalam kejuaraan tersebut adalah sistem cup, dimana pemenang dari tiap pertandingan akan lolos ke babak berikutnya dan peserta yang kalah akan langsung tereliminasi secara otomatis.

a. Berapakah total pertandingan yang dimainkan dari awal turnamen sampai pada babak final?

b. Jika diasumsikan bahwa pada tiap pertandingan jumlah tiket yang terjual adalah 500 buah, berapa jumlah tiket yang terjual selama kejuaraan tennis tersebut?

Penyelesaian:

Pada babak awal/pertama, kejuaraan tersebut diikuti oleh 2.048 peserta, sehingga terdapat 1.024 pertandingan. Babak final hanya memainkan 1 pertandingan yang diikuti oleh 2 peserta yang terus lolos dari babak awal. Jumlah pertandingan pada
tiap-tiap babak dari babak awal sampai dengan babak final berturut-turut adalah 1.024, 512, 256, 128, 64, 32, 16, 8, 4, 2, dan 1.

a. Total pertandingan dari babak awal turnamen sampai dengan babak final adalah 2.047 pertandingan.

b. 1.023.500 tiket

10. **Robot Mobil.** Suatu robot mobil yang dikerahkan dengan tenaga baterai memiliki kecepatan awal 21 cm/detik. Energi yang tersimpan di dalam baterai mobil tersebut terus berkurang sepanjang waktu, sehingga setelah berjalan selama setengah menit dari posisi awal kecepatan robot mobil berkurang menjadi 18 cm/detik, dan kecepatannya berkurang lagi menjadi 15 cm/detik setelah berjalan 1 menit dari posisi awal, begitu seterusnya kecepatan robot mobil selalu berkurang sebesar 3 cm/detik setiap setengah menit. Robot mobil tidak dapat berjalan ketika kecepatannya mencapai 0 cm/detik.

a. Pada jarak berapa meter dari posisi awal dan setelah berapa menit robot mobil tersebut akan berhenti?

b. Jika lintasan robot mobil berupa lingkaran dengan diameter 56 cm, apakah robot mobil tersebut dapat berjalan sepanjang satu putaran penuh? Berikan penjelasanmu!

Penyelesaian:

Perhatikan barisan bilangan di bawah ini:

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

Uji Kompetensi 2
Pola, Barisan, dan Deret

1. Uji kompetensi digunakan untuk mengetahui kompetensi yang telah dicapai siswa tentang pola, barisan, dan deret.

2. Jika memungkinkan guru dapat membuat soal lain yang lebih bervariasi untuk Uji Kompetensi.

3. Siswa sudah tuntas apabila sudah mencapai nilai diatas 75 dan siswa diberi soal tambahan yang lebih menantang, dan apabila masih kurang dari 75 maka guru melakukan pembelajaran remedial sebelum melanjutkan ke materi berikutnya.

Uji Kompetensi 2
Pola, Barisan, dan Deret

1. Tentukan suku-suku dari bilangan-bilangan di bawah ini!
 a. Suku ke-30 dari barisan bilangan 50, 56, 62, 68, ...
 b. Suku ke-8 dari barisan bilangan 6, 12, 24, 48, ...
 c. Suku ke-2015 dari barisan bilangan 2, 7, 12, 17, ...
 d. Suku ke-10 dari barisan bilangan 15, 10, \(\frac{20}{3} \), \(\frac{40}{9} \), ...

 Penyelesaian:

 a. 224
 b. 768
 c. 10.072
 d. \(45(1 - (\frac{2}{3})^{10})\)

2. Tentukan suku ke-8 dan suku ke-\(n\) (\(U_n\)) dari barisan bilangan berikut!
 a. 1, 6, 11, 16, ...
 b. 2, 6, 18, 54, ...
 c. 100, 95, 90, 85, ...
 d. \(\frac{1}{3}, \frac{5}{3}, \frac{7}{3}, \ldots\)

 Penyelesaian:

 a. \(U_8 = 36, U_n = 5n^4 - 4\)
b. \(U_8 = 4.374, U_n = 2(3)^{n-1} \)

c. \(U_8 = 65, U_n = 105 - 5n \)

d. \(U_8 = 5, U_n = \frac{2}{3}n - \frac{1}{3} \)

3. Lengkapilah bagian-bagian yang kosong dalam pola bilangan di bawah ini:

\[
\begin{align*}
(1 \times 8) + 1 & = 9 \\
(12 \times 8) + \ldots & = 98 \\
(... \times 8) + 3 & = 987 \\
(... \times \ldots) + 4 & = 9.876 \\
(12.345 \times 8) + \ldots & = 98.765 \\
(... \times \ldots) + \ldots & = 987.654 \\
(... \times \ldots) + \ldots & = 987.654.432 \\
(... \times \ldots) + \ldots & = 987.654.321
\end{align*}
\]

Penyelesaian:

\[
\begin{align*}
(1 \times 8) + 1 & = 9 \\
(12 \times 8) + 2 & = 98 \\
(123 \times 8) + 3 & = 987 \\
(1.234 \times 8) + 4 & = 9.876 \\
(12.345 \times 8) + 5 & = 98.765 \\
(123.456 \times 8) + 6 & = 987.654 \\
(123.456.789 \times 8) + 7 & = 987.654.342 \\
(123.456.789 \times 8) + 9 & = 987.654.321
\end{align*}
\]

4. Perhatikan pola bilangan di bawah ini:

\[
\begin{align*}
1 + 2 & = 3 \\
4 + 5 + 6 & = 7 + 8 \\
9 + 10 + 11 + 12 & = 13 + 14 + 15 \\
16 + 17 + 18 + 19 + 20 & = 21 + 22 + 23 + 24 \\
\end{align*}
\]

dan seterusnya
Penyelesaian:

5. Pada papan catur di bawah terdapat 64 kotak. Kotak pertama diisi 6 butir padi, kotak kedua diisi 12 butir padi, kotak ketiga diisi 18 butir padi, demikian seterusnya setiap kali pengisian berselisih 6 butir. Hitunglah jumlah biji beras pada papan catur berikut!

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
</tr>
</tbody>
</table>

Gambar 2.28 Papan catur yang diisi butir padi

Penyelesaian:

Lakukan perhitungan dengan menggunakan rumusan pada deret bilangan. Didapatkan jumlah seluruh butir beras pada papan catur tersebut adalah 12.480 butir beras.

6. Panjang Sisi Segitiga. Diketahui keliling dari segitiga sama sisi ABC di bawah ini adalah w cm. Titik tengah dari masing-masing sisi segitiga tersebut kemudian dibubungkan satu dengan yang lainnya sehingga membentuk suatu segitiga baru yang lebih kecil. Proses ini berlangsung secara terus-menerus seperti yang terlihat pada gambar. Apabila keliling dari segitiga ke-8 yang terbentuk adalah 1,5 cm, tentukan nilai dari w!

Gambar 2.29 Segitiga sama sisi
Penyelesaian:

Keliling segitiga kedelapan adalah 1,5 cm. Keliling segitiga ketujuh adalah dua kali lipat segitiga kedelapan yaitu 3 cm. Keliling segitiga keenam adalah dua kali lipat segitiga ketujuh yaitu 6 cm. Keliling segitiga pada bagian luar adalah 2 kali lipat dari segitiga yang tepat berada di dalamnya. Dengan demikian keliling segitiga pertama yaitu segitiga ABC adalah 192 cm.

<table>
<thead>
<tr>
<th>Ketinggian (m)</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu ($^\circ$C)</td>
<td>32</td>
<td>30</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>22</td>
</tr>
</tbody>
</table>

Suhu di kota tersebut akan turun dengan nilai tetap dengan semakin tingginya wilayah kota yang diukur dari permukaan laut.

a. Berapakah suhu di wilayah kota Y yang memiliki ketinggian 1.000 m di atas permukaan laut?

b. Berapakah suhu di wilayah kota Y yang berada pada wilayah pantai? (ketinggian wilayah pantai diasumsikan sama dengan ketinggian permukaan air laut)

c. Berapakah suhu terendah di kota Y jika ketinggian maksimum wilayah kota Y adalah 1.300 m di atas permukaan laut?

d. Menurut siswa, berapakah suhu di wilayah kota Y yang memiliki ketinggian 700 m di atas permukaan laut? Berikan alasanmu!

Penyelesaian:

a. 20$^\circ$C

b. 14$^\circ$C

c. 34$^\circ$C

d. 8$^\circ$C

8. Gaji Manajer. Pak Hafid adalah seorang manajer di sebuah perusahaan asuransi. Tahun lalu, dia mendapatkan gaji sebesar Rp15.000.000,00 per bulan. Karena prestasinya, tahun ini dia mendapatkan kenaikan gaji sebesar Rp750.000,00 sehingga pada tahun ini dia mendapatkan gaji sebesar Rp15.750.000,00 per bulan. Pada tahun depan gajinya naik lagi menjadi Rp16.500.000,00 per bulan, begitu seterusnya dia mendapatkan kenaikan gaji sebesar Rp750.000,00 setiap tahunnya.

a. Jika tahun ini usia Pak Hafid adalah 40 tahun, berapa besar gaji per bulan yang akan didapatkan Pak Hafid ketika usianya adalah 54 tahun?

Sumber: http://www.bimbingan.org
Gambar 2.30 Manger perusahaan
b. Apabila batas pensiun di perusahaan asuransi tersebut adalah 60 tahun dan diasumsikan Pak Hafid akan menjabat sebagai manajer sampai dia pensiun, apakah Pak Hafid pernah mendapatkan gaji minimal sebesar Rp32.000.000,00 tiap bulannya? Jika iya pada usia berapa dia mendapatkannya? Berikan penjelasanmu!

Penyelesaian:
Gaji Pak Hafid pada tahun ini adalah Rp15.750.000,00. Gaji Pak Hafid pada \(n\) tahun mendatang adalah Rp750.000.

9. Pada sebuah segitiga sembarang diketahui bahwa besar salah satu sudutnya adalah 60°. Ketiga sudut segitiga tersebut membentuk suatu barisan aritmetika. Hasil penjumlahan antara sudut pertama dengan sudut kedua adalah 1.000, hasil penjumlahan antara sudut kedua dengan sudut ketiga adalah 1.400, sedangkan hasil penjumlahan antara sudut pertama dengan sudut ketiga adalah 1.200. Berapakah besar sudut lain dari segitiga tersebut?

Penyelesaian:
Misalkan sudut ke-1 sebesar \(x\), sudut ke-2 sebesar \(y\), dan sudut ke-3 sebesar \(z\). Gunakan perhitungan pada barisan aritmetika, dan dari keterangan yang ada tersebut, didapatkan besar sudut lainnya adalah 40° dan 80°.

10. Jumlah dari deret bilangan 1 + 8 + 15 + … adalah 396. Berapa banyak suku pada deret bilangan tersebut?

Penyelesaian:
Banyak suku pada deret bilangan tersebut adalah 11.

a. Banyaknya produksi pada bulan pertama

b. Pertambahan produksi tiap bulan

Sumber: http://sumutpos.co
Gambar 2.32 Pabrik sepeda

Gambar 2.31 Segitiga sembarang
c. Jumlah produksi pada tahun pertama

d. Pada bulan ke berapa setelah pabrik tersebut beroperasi jumlah produksi sepeda melebihi 10.000 unit tiap bulannya?

Penyelesaian:

a. 1.000 unit c. 28.500 unit
b. 250 d. Bulan ke-38

12. Andre dikontrak untuk bekerja pada suatu perusahaan selama 7 hari. Sebelum bekerja, dia diminta memilih antara diberi gaji sebesar Rp75.000,00 per hari selama seminggu, atau diberikan gaji sebesar Rp10.000,00 pada hari pertama dan bertambah dua kali lipat tiap harinya selama seminggu. Manakah pilihan terbaik yang harus dipilih Andre agar dia mendapatkan gaji yang maksimal? Jelaskan jawaban!

Penyelesaian:

Opsi pertama adalah Andre akan digaji sebesar Rp75.000,00 tiap selama tujuh hari. Opsi kedua adalah Andre akan digaji Rp10.000,00 pada hari pertama dan akan meningkat menjadi dua kali lipat pada hari berikutnya, begitu seterusnya sampai 7 hari. Jika memilih opsi pertama maka total gaji Andre selama 7 hari kerja adalah Rp525.000,00. Jika memilih opsi kedua maka total gajinya selama 7 hari kerja adalah Rp1.270.000,00. Dengan demikian pilihan terbaik yang harus dipilih Andre adalah opsi kedua.

13. Toko Kue. Pak Udin mempunyai sebuah toko kue. Karena kue yang dijual sangat lezat, maka banyak pembeli baru yang berdatangan setiap harinya untuk membeli kue-nya. Dengan semakin larisnya usaha kue yang dimiliki oleh Pak Udin, maka keuntungan yang didapatkan pun juga semakin bertambah setiap harinya dengan jumlah yang tetap. Bila total keuntungan sampai hari keempat adalah Rp700.000,00 dan total keuntungan sampai hari kesepuluh adalah Rp2.200.000,00, maka tentukan total keuntungan sampai hari ke-20!

Sumber: http://h4rry5450ngko.blogspot.com
Gambar 2.33 Pekerja kantoran

Sumber: http://ipnuralam.wordpress.com
Gambar 2.34 Toko kue
Penyelesaian:

Hitung menggunakan rumus pada deret bilangan, sehingga didapatkan keuntungan pada hari pertama adalah Rp152.500,00. Pertambahan keuntungan tiap harinya adalah Rp15.000,00. Total keuntungan sampai hari ke-20 adalah Rp5.900.000,00.

14. Tantangan. Perhatikan gambar di bawah ini!

Sumber: Dokumen Kemdikbud
Gambar 2.35 Susunan segitiga

Aturan untuk mendapatkan gambar berikutnya adalah dengan menambah gambar segitiga sama sisi berwarna hitam dengan ukuran sisinya adalah setengah dari masing-masing segitiga berwarna putih yang tersisa pada gambar berikutnya.

Jika diketahui luas segitiga sama sisi pada gambar pertama adalah 10 satuan luas, tentukan luas daerah yang dibentuk oleh segitiga berwarna hitam pada gambar ke-5. Jika siswa diminta untuk menentukan luas daerah yang dibentuk oleh segitiga berwarna hitam pada gambar ke-8, bagaimana caramu menentukannya? Berapakah luas daerahnya?

Penyelesaian:

Langkah pertama adalah hitung luas satu buah segitiga sama sisi berwarna putih pada tiap-tiap gambar. Pada gambar pertama, luas satu buah segitiga putih adalah \(10\) satuan. Pada gambar kedua luas satu buah segitiga putih adalah \(\frac{1}{4} \times 10\). Pada gambar ketiga luas satu buah segitiga putih adalah \(\frac{1}{4^2} \times 10\). Dengan menggunakan pola ini, maka luas satu buah segitiga putih pada gambar ke-\(n\) adalah \(\frac{1}{4^{n-1}} \times 10\).

Langkah kedua adalah hitung luas daerah yang dibentuk oleh segitiga hitam pada tiap-tiap gambar. Pada gambar kedua luas daerah yang dibentuk oleh segitiga hitam adalah \(\frac{1}{4} \times 10\). Pada gambar ketiga luas daerah yang dibentuk oleh segitiga hitam adalah \(\frac{1}{4} \times 10 + \frac{3}{4} \times \frac{1}{4} \times 10\). Dengan menggunakan pola ini, maka luas daerah yang dibentuk oleh segitiga hitam pada gambar ke-\(n\) adalah
\[
\frac{1}{4} \times \left(\frac{3}{4} \right)^0 + \left(\frac{3}{4} \right)^1 + \left(\frac{3}{4} \right)^2 + \ldots + \left(\frac{3}{4} \right)^{n-2} \right) \times 10.
\]
Dengan demikian luas daerah yang dibentuk oleh segitiga berwarna hitam pada gambar kelima adalah \[
\frac{1}{4} \times \left(\frac{3}{4} \right)^0 + \left(\frac{3}{4} \right)^1 + \left(\frac{3}{4} \right)^2 + \left(\frac{3}{4} \right)^3 \times 10.
\]

Luas daerah yang dibentuk oleh segitiga berwarna hitam pada gambar ke-8 adalah \[
\frac{1}{4} \times \left(\frac{3}{4} \right)^0 + \left(\frac{3}{4} \right)^1 + \left(\frac{3}{4} \right)^2 + \ldots + \left(\frac{3}{4} \right)^6 \times 10.
\]

15. **Tantangan.** Tiga bilangan membentuk suatu barisan aritmetika. Apabila suku pertama dikurangi dengan suku ketiga, hasilnya adalah 8. Ketika suku pertama, kedua dan ketiga barisan aritmetika tersebut masing-masing ditambah dengan 3, 5, dan 8 maka bilangan-bilangan yang dihasilkan akan membentuk suatu barisan geometri. Carilah beda dan suku pertama barisan aritmetika tersebut! Bilangan berapa saja yang termasuk dalam barisan aritmetika tersebut?

Penyelesaian:

Misalkan tiga bilangan yang berurutan tersebut adalah \(a\), \(b\), dan \(c\). Dari soal diketahui bahwa \(a - c = 8\), atau bisa dituliskan \(a = c + 8\). Beda pada barisan aritmetika tersebut adalah -4. Dengan menggunakan perbandingan pada barisan geometri diperoleh:

\[
\begin{align*}
\frac{a + 3}{b + 5} &= \frac{c + 8}{b + 5} \\
\frac{a + 3}{a - 4 + 5} &= \frac{a}{a - 4 + 5} \\
\frac{a + 3}{a + 1} &= \frac{a}{a + 1} \\
\end{align*}
\]

\[
a^2 + 4a + 3 = a^2 + a
\]

diperoleh nilai \(a = -1\)

Dengan demikian bilangan yang termasuk ke dalam barisan aritmetika adalah -1, -5, dan -9.
Soal Pengayaan

1. **Data Nilai Ekspor Perusahaan.** Data berikut menunjukkan nilai ekspor dari sebuah perusahaan tekstil:

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Nilai ekspor (dalam milyar rupiah)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>3</td>
</tr>
<tr>
<td>2011</td>
<td>6</td>
</tr>
<tr>
<td>2012</td>
<td>9</td>
</tr>
<tr>
<td>2013</td>
<td>12</td>
</tr>
<tr>
<td>2014</td>
<td>…</td>
</tr>
<tr>
<td>2015</td>
<td>…</td>
</tr>
<tr>
<td>2016</td>
<td>…</td>
</tr>
</tbody>
</table>

Nilai ekspor perusahaan tekstil tersebut terus meningkat dengan jumlah yang tetap tiap tahunnya. Berdasarkan di atas, jawablah pertanyaan berikut ini:

b. Prediksilah nilai ekspor perusahaan tekstil tersebut pada tahun 2017 dan 2020? *(24 dan 33 milyar)*

c. Berapa total nilai ekspor perusahaan tekstil tersebut dari tahun 2010 hingga tahun 2020? *(198 milyar)*

2. **Menabung.** Udin membuka rekening tabungan di sebuah Bank. Pada bulan pertama, ia menyetor uang sebesar Rp100.000,00. Jumlah setoran tiap bulannya akan ia naikkan sebesar Rp20.000,00 dari bulan sebelumnya. Tentukan:

a. Besar setoran Udin pada bulan ke-10? *(Rp280.000,00)*

b. Pada bulan ke berapakah jumlah uang yang disetorkan Udin ke bank adalah sebesar Rp400.000,00? *(bulan ke-16)*

c. Berapa jumlah total uang Udin di bank setelah 2 tahun? *(Rp7.920.000,00)*

3. **Surat Lamaran Kerja.** Sari adalah seorang pegawai di sebuah perusahaan mobil. Ia mendapat tugas dari manajernya untuk membuat laporan mengenai jumlah surat lamaran yang masuk ke perusahaan tersebut dari tahun 2007 sampai tahun 2014. Akan tetapi, catatan tersebut hilang. Ia hanya mengingat bahwa jumlah surat lamaran setiap tahun dari tahun 2007 sampai tahun 2014 terus bertambah tiap tahunnya dengan jumlah yang tetap, jumlah pelamar pada tahun...

 a. Jumlah karyawan yang diterima perusahaan tersebut pada tahun 2011! (45)
 b. Jumlah seluruh karyawan yang diterima perusahaan tersebut dalam kurun waktu tahun 2007 hingga 2013! (280)

7. **Perusahaan Cokelat.** Sebuah perusahaan coklat pada bulan Januari 2014 mencatat laba bersih sebesar 32 juta rupiah. Karena pertumbuhan ekonomi dan permintaan coklat terhadap perusahaan tersebut terus meningkat, jumlah laba bersih yang didapatkan perusahaan tersebut terus meningkat menjadi 2 kali lipat dari bulan sebelumnya.

 a. Tentukan rumus suku ke-n dari laba bersih yang didapatkan perusahaan tersebut (dalam juta rupiah)! (32 \times 2^{n-1})
b. Pada bulan apakah perusahaan mebel tersebut mendapatkan laba bersih sebesar 512 juta rupiah? *(Mei 2014)*

c. Tentukan jumlah total laba bersih perusahaan tersebut dari bulan Januari 2014 sampai dengan bulan Juli 2014! *(4.064 juta / 4,064 milyar rupiah)*

8. Tentukan jumlah 10 suku pertama barisan bilangan di bawah ini:
 a. 640, 320, 160, 80, …
 b. 14, 25, 36, 47, …
 c. 100, 85, 70, 55, …
 d. 6, 12, 24, 48, …

9. Jika barisan 40, x, 10, … merupakan barisan geometri, tentukan jumlah 5 suku pertamanya! *(77,5)*

10. **Badak Bercula Satu.** Berdasarkan data yang ada, jumlah badak bercula satu di Taman Nasional Ujung Kulon pada tahun 2014 adalah 56 ekor. Tiap tahun populasi badak bercula satu semakin menurun, hal ini dikarenakan beberapa hal, diantaranya adalah kematian alami dan perburuan terhadap binatang tersebut. Jika pada tahun 2014 ada 2 ekor badak yang mati, lalu pada tahun 2015 terdapat 4 ekor badak yang mati, demikian seterusnya sehingga tiap tahun jumlah badak yang mati selalu bertambah sebanyak 2 ekor secara konstan. Jika diasumsikan tidak ada kelahiran badak baru, pada tahun berapa badak bercula satu tersebut akan punah?

Sumber: http://fotohewan.info

Gambar 2.36 Badak Bercula Satu
1. Menentukan perbandingan antara dua kuantitas atau lebih.
2. Menyelesaikan permasalahan nyata yang berhubungan dengan perbandingan dan persen.

Pengalaman Belajar

1. Menentukan perbandingan antara dua kuantitas atau lebih.
2. Menyelesaikan permasalahan nyata yang berhubungan dengan perbandingan dan persen.
Perbandingan Bertingkat

- Perbandingan Tiga Variabel
- Perbandingan Bertingkat pada Kehidupan Nyata

Abul Wafalah yang pertama kali memperkenalkan istilah matematika yang sangat penting itu. Abu Wafa dikenal sangat jenius dalam bidang geometri. Ia mampu menyelesaikan masalah-masalah geometri dengan sangat tangkas.

Hikmah yang bisa diambil

Hikmah yang dapat diambil adalah untuk mendapatkan ilmu harus diiringi dengan usaha keras. Selain itu juga jangan pernah puas dengan ilmu yang didapat sekarang dan carilah guru sebanyak-banyaknya untuk memperluas ilmu yang dimiliki.
A. Perbandingan Bertingkat

Pertanyaan Penting

Berikan penjelasan pada siswa mengenai seberapa pentingnya perbandingan bertingkat pada kehidupan nyata. Misalkan membeli barang dengan diskon yang berulang yaitu misalnya membeli suatu barang mendapat diskon 50% dan jika membeli lebih dari tiga maka mendapat diskon tambahan 30%.

Bagaimana siswa membandingkan kualitas dari dua benda atau lebih?

Kegiatan 3.1 Uang Saku

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mendata uang saku temen sekelasnya.

Setelah kegiatan ini siswa diharapkan memahami tentang perbandingan tiga variabel.

Untuk itu siswa harus melakukan Ayo kita mencoba, Ayo kita amati, Ayo kita menalar, Ayo kita simpulkan.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai dua hal tersebut yaitu perbandingan tiga variabel.

Kegiatan 3.1 Uang Saku

Catatlah uang saku teman sekelasmu, kemudian pilih tiga orang yang mempunyai uang saku yang berbeda.
Ayo Kita Mencoba

Isilah tabel berikut ini:

<table>
<thead>
<tr>
<th>Siswa 1 (Rupiah)</th>
<th>Siswa 2 (Rupiah)</th>
<th>Siswa 3 (Rupiah)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uang saku siswa 1 : Uang saku siswa 2 : Uang saku siswa 3 = ... : ... : ...

Dapat disederhanakan menjadi

Uang saku siswa 1 : Uang saku siswa 2 : Uang saku siswa 3 = ... : ... : ...

Bentuk perbandingan di atas disebut sebagai **perbandingan tiga variabel**.

Ayo Kita Amati

Berdasarkan perbandingan tiga variabel diatas, tentukan perbandingan dua variabel berikut ini

i. uang saku siswa 1 : uang saku siswa 2
ii. uang saku siswa 1 : uang saku siswa 3
iii. uang saku siswa 2 : uang saku siswa 3

Apa yang dapat siswa simpulkan?

Ayo Kita Menalar

1. Jika yang siswa ketahui adalah
 i. uang saku siswa 1 : uang saku siswa 2
 ii. uang saku siswa 2 : uang saku siswa 3

Dapatkah siswa menentukan perbandingan tiga variabel yaitu

Petunjuk: Misalkan

uang saku siswa 1 : uang saku siswa 2 = a : b
uang saku siswa 2 : uang saku siswa 3 = c : d
atau dapat dituliskan

uang saku siswa 1 : uang saku siswa 2 = \(\frac{ac}{bc} : c \)
uang saku siswa 2 : uang saku siswa 3 = \(c : d \)
dengan demikian

Uang saku siswa 1 : Uang saku siswa 2 : Uang saku siswa 3 = \(\frac{ac}{bc} : c : d \)

2. Jelaskan bagaimana bentuk perbandingan \(n \) variabel.

Petunjuk: Perbandingan yang berbentuk \(a_1 : a_2 : \ldots : a_n \)

1. Apa yang dimaksud perbandingan tiga variabel? **Petunjuk:** Perbandingan yang berbentuk \(a : b : c \).

2. Bagaimana mendapatkan perbandingan dua variabel jika diketahui perbandingan tiga variabelnya? **Petunjuk:** Misal \(a_1 : a_2 : a_3 = b_1 : b_2 : b_3 \) maka \(a_1 : a_2 = b_1 : b_2 \), \(a_1 : a_3 = b_1 : b_3 \) dan \(a_2 : a_3 = b_2 : b_3 \).

Kegiatan 3.2 Beasiswa untuk Siswa Kurang Mampu

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk membaca permasalahan yang ada pada kegiatan ini.

Setelah kegiatan ini siswa diharapkan memahami tentang perbandingan bertingkat.

Untuk itu siswa harus melakukan Ayo kita gali informasi, Ayo kita mencoba, Ayo kita menalar, Ayo kita simpulkan.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai perbandingan bertingkat.

Kegiatan 3.2 Beasiswa untuk Siswa Kurang Mampu

Isilah tabel berikut ini.

<table>
<thead>
<tr>
<th>Banyaknya Siswa Laki-laki</th>
<th>Siswa Perempuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mendapat Beasiswa</td>
<td>Tidak Mendapat Beasiswa</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Banyaknya siswa = 80
Banyaknya siswa = 120

Banyak murid di SMA Harapan Bangsa = 200

Tentukan perbandingan antara

b. Banyak siswa laki-laki dan banyak siswa laki-laki yang memperoleh beasiswa di SMP Harapan Bangsa (Penyelesaian: 2 : 1).

c. Banyak siswa laki-laki yang memperoleh beasiswa dan banyak seluruh siswa di SMP Harapan Bangsa (Penyelesaian: 1 : 5).

d. Banyak siswa perempuan dan seluruh siswa di SMP Harapan Bangsa (Penyelesaian: 4 : 5).

e. Banyak siswa perempuan keseluruhan dan banyak siswa laki-laki yang memperoleh beasiswa di SMP Harapan Bangsa (Penyelesaian: 2 : 3).

f. Banyak siswa perempuan yang memperoleh beasiswa dan banyak seluruh siswa di SMP Harapan Bangsa (Penyelesaian: 2 : 5).

Bagaimana siswa memperoleh perbandingan

1. Banyak siswa laki-laki dan seluruh siswa di SMP Harapan Bangsa jika yang diketahui perbandingan

 a. Banyak siswa laki-laki dan banyak siswa laki-laki yang memperoleh beasiswa di SMP Harapan Bangsa dan
b. Banyak siswa laki-laki yang memperoleh beasiswa dan banyak seluruh siswa di SMP Harapan Bangsa

2. Banyak siswa perempuan dan seluruh siswa di SMP Harapan Bangsa jika diketahui perbandingan
a. Banyak siswa perempuan keseluruhan dan banyak siswa perempuan yang memperoleh beasiswa di SMP Harapan Bangsa
b. Banyak siswa perempuan yang memperoleh beasiswa dan banyak seluruh siswa di SMP Harapan Bangsa

Petunjuk: jawabannya arahkan ke Materi Esensi pada subbab ini. Gunakan sifat perkalian bilangan pecahan.

Kegiatan 3.3

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk membaca permasalahan yang ada pada kegiatan ini.

Setelah kegiatan ini siswa diharapkan memahami tentang perbandingan bertingkat yang ada hubungannya dengan persentase.

Untuk itu siswa harus melakukan Ayo kita gali informasi, Ayo kita mencoba, Ayo kita menalar.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai dua hal tersebut yaitu perbandingan dan hubungannya persentase.

Setelah kegiatan ini pemahaman siswa diperdalam dengan melakukan Ayo kita gali informasi, Ayo kita berbagi dan Ayo kita menanya.

Suatu desa mempunyai penduduk sebanyak 500 jiwa. Pada desa ini dilakukan pendataan untuk mengetahui produktifitas penduduk. Berdasarkan hasil pendataan diperoleh bahwa penduduk yang aktif bekerja sebanyak 80% dari jumlah penduduk keseluruhan. Setelah didata lebih jauh lagi ternyata penduduk yang bekerja terdiri dari 100 jiwa usia tak produktif dan penduduk yang tidak bekerja terdiri dari 75 jiwa usia produktif.
Isilah tabel berikut ini.

<table>
<thead>
<tr>
<th>Banyak Penduduk (Jiwa)</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bekerja (Jiwa)</td>
<td>400</td>
</tr>
<tr>
<td>Usia Produktif (Jiwa)</td>
<td>300</td>
</tr>
<tr>
<td>Usia Produktif (Jiwa)</td>
<td>75</td>
</tr>
</tbody>
</table>

Tentukan perbandingan antara

a. Banyak penduduk yang bekerja pada usia tak produktif dan penduduk keseluruhan (Penyelesaian: 1 : 5).

b. Banyak penduduk yang bekerja pada usia tak produktif dan banyak penduduk keseluruhan yang bekerja (Penyelesaian: 1 : 4).

c. Banyak penduduk yang bekerja dan penduduk keseluruhan (Penyelesaian: 4 : 5).

d. Banyak penduduk yang tak bekerja pada usia produktif dan penduduk keseluruhan (Penyelesaian: 3 : 20).

e. Banyak penduduk yang tak bekerja pada usia produktif dan banyak penduduk keseluruhan yang tak bekerja (Penyelesaian: 3 : 4).

f. Banyak penduduk yang tak bekerja dan penduduk keseluruhan (Penyelesaian: 1 : 5).

Bagaimana siswa memperoleh perbandingan

1. Banyak penduduk yang bekerja pada usia tak produktif dan penduduk keseluruhan jika diketahui perbandingan
 a. Banyak penduduk yang bekerja pada usia tak produktif dan banyak penduduk keseluruhan yang bekerja; dan
 b. Banyak penduduk yang bekerja dan penduduk keseluruhan
2. Banyak penduduk yang tak bekerja pada usia produktif dan penduduk keseluruhan jika diketahui perbandingan
 a. Banyak penduduk yang tak bekerja pada usia produktif dan banyak penduduk keseluruhan yang tak bekerja; dan
 b. Banyak penduduk yang tak bekerja dan penduduk keseluruhan.

Petunjuk: Jawabannya arahakan ke Materi Esensi pada subbab ini. Gunakan sifat perkalian bilangan pecahan.

Ayo Kita Gali Informasi

Ayo Kita Berbagi

Presentasikan informasi yang siswa peroleh didepan kelas.

Ayo Kita Menanya

Buatlah pertanyaan yang berhubungan dengan perbandingan bertingkat.

Materi Esensi Perbandingan Bertingkat

Pada bagian ini jelaskan pada siswa mengenai Algoritma untuk menyelesaikan permasalahan yang berbentuk perbandingan bertingkat.

Materi Esensi Perbandingan Bertingkat

Berikut langkah-langkah untuk menyelesaikan masalah perbandingan bertingkat
Langkah 1. Jadikan permasalahan $a : b = \text{bilangan 1 : bilangan 2}$ menjadi

$$\frac{a}{b} = \text{bilangan 1}$$

$$\frac{b}{a} = \text{bilangan 2}$$
Langkah 2. Jadikan permasalahan \(b : c = \text{bilangan} \ 3 : \text{bilangan} \ 4 \) menjadi

\[
\frac{b}{c} = \frac{\text{bilangan} \ 3}{\text{bilangan} \ 4}
\]

Langkah 3. Didapatkan

\[
\frac{a}{c} = \frac{\text{bilangan} \ 1 \times \ \text{bilangan} \ 3}{\text{bilangan} \ 2 \times \ \text{bilangan} \ 4}
\]

Sehingga \(a : c = \text{bilangan} \ 1 \times \ \text{bilangan} \ 3 : \ \text{bilangan} \ 2 \times \ \text{bilangan} \ 4 \)

Catatan: Jika dalam permasalahan dalam bentuk persen maka rubahlah bentuk tersebut kedalam bentuk perbandingan biasa \((a : b)\). Kemudian lakukan langkah diatas untuk menyelesaikan permasalahannya.

Contoh 3.1 Perbandingan Bertingkat

Pada contoh siswa diharapkan mengerti mengenai perbandingan bertingkat pada kehidupan nyata.

Contoh 3.1 Perbandingan Bertingkat

Dalam suatu kelas, perbandingan banyaknya siswa laki-laki dan seluruh siswa dalam kelas adalaha \(2 : 3 \) dan Perbandingan banyaknya siswa laki-laki yang senang olahraga dan yang tidak adalah \(4 : 1 \). Tentukan perbandingan banyak siswa laki-laki yang senang olahraga terhadap banyaknya siswa secara keseluruhan.

Alternatif Penyelesaian:

Diketahui:

\[
\text{banyaknya siswa laki - laki} = 2 \\
\text{banyaknya seluruh siswa} = 3
\]

\[
\text{banyaknya siswa laki - laki senang olahraga} = 4 \\
\text{banyaknya siswa laki - laki tidak senang olahraga} = 1
\]

Ditanya:

\[
\frac{\text{banyaknya siswa laki - laki senang olahraga}}{\text{banyaknya seluruh siswa}}
\]

Jawab:

Sudah jelas bahwa

banyaknya siswa laki-laki senang olahraga + banyaknya siswa laki-laki tidak senang olahraga = banyaknya siswa laki-laki
Bagi kedua ruas dengan banyaknya siswa laki-laki didapatkan
\[
\frac{\text{banyaknya siswa laki - laki senang olahraga}}{\text{banyaknya siswa laki - laki}} + \frac{\text{banyaknya siswa laki - laki tidak senang olahraga}}{\text{banyaknya siswa laki - laki}} = 1
\]
Diketahui bahwa
\[
\frac{\text{banyaknya siswa laki - laki senang olahraga}}{\text{banyaknya siswa laki - laki tidak senang olahraga}} = \frac{4}{1},
\]
maka
banyaknya siswa laki-laki tidak senang olahraga = \(\frac{1}{4}\) banyaknya siswa laki-laki senang olahraga.
Dengan demikian
\[
\frac{\text{banyaknya siswa laki - laki senang olahraga}}{\text{banyaknya siswa laki - laki}} + \frac{1}{4} \frac{\text{banyaknya siswa laki - laki senang olahraga}}{\text{banyaknya siswa laki - laki}} = 1
\]
atau
\[
\frac{\text{banyaknya siswa laki - laki senang olahraga}}{\text{banyaknya siswa laki - laki}} = \frac{4}{5} \quad \ldots (1)
\]
Diketahui juga bahwa
\[
\frac{\text{banyaknya siswa laki - laki}}{\text{banyaknya seluruh siswa}} = \frac{2}{3} \quad \ldots (2)
\]
Kalikan Persamaan (1) dan (2) didapat
\[
\frac{\text{banyaknya siswa laki - laki senang olahraga}}{\text{banyaknya seluruh siswa}} = \frac{8}{15}
\]

Ayo Kita Tinjau Ulang

Pada bagian ini siswa diharapkan lebih mengerti mengenai contoh-contoh yang telah diberikan diatas dengan cara melakukan latihan-latihan ini.

Ayo Kita Tinjau Ulang

Kembali ke Contoh 3.1

Jika yang diketahui perbandingan banyaknya siswa perempuan dan seluruh siswa dalam kelas adalah \(2 : 3\) Dan Perbandingan banyaknya siswa laki-laki yang senang olahraga dan yang tidak adalah \(4 : 1\). Tentukan perbandingan banyak siswa laki-laki yang senang olahraga terhadap banyaknya siswa secara keseluruhan (Penyelesaian: \(4 : 27\)).
Latihan 3 Perbandingan Bertingkat

Mintalah siswa untuk menyelesaikan soal latihan dan di bahas di kelas dengan menunjuk salah satu siswa, sedang siswa yang lain di minta menanggapi dengan santun. Begitu seterusnya untuk nomor soal lainnya.

Latihan 3 Perbandingan Bertingkat

 Penyelesaian:
 27 pensil

2. Empat buah wadah yang serupa P, Q, R, dan S, total berisi 85 liter air. Perbandingan volume air di wadah P, Q, dan R adalah 4 : 1 : 3. Jika wadah S berisi 13 liter air, berapa air dalam wadah R?

 Penyelesaian:
 27 liter

 Penyelesaian:
 30 tahun

4. Ira dan Ria berbelanja di pasar dengan total uang yang mereka bawa Rp100.000,00. Setelah berbelanja, Ira masih memiliki $\frac{1}{4}$ dari uangnya mula-mula dan uang Ria masih bersisa Rp30.000,00. Jika besar uang yang dibelanjakan oleh Ira dan Ria sama, berapa uang yang dibawa Ria mula-mula?

 Penyelesaian:
 Rp60.000,00

5. Banyak perangko yang dimiliki Wina dan Wini adalah 240 buah. Setelah Wini memberikan $\frac{1}{7}$ perangkonya kepada Wina, banyak perangko mereka menjadi sama. Berapa banyak perangko yang dimiliki Wini mula-mula?

 Penyelesaian:
 140 perangko

Penyelesaian:
\[
\begin{align*}
\text{badan} & = 3 \\
\text{kepala} & = 1 \\
\text{kepala} & = 1 \\
\text{seluruh tubuh} & = 10 \\
\text{badan} & = 3 \\
\text{seluruh tubuh} & = 10
\end{align*}
\]

7. Pada suatu negara dilakukan sensus penduduk ternyata 57% penduduknya masih tergolong miskin dan dari yang miskin tersebut 30% masih bisa sekolah sampai perguruan tinggi. Berapakah perbandingan penduduk miskin yang tidak bisa sekolah sampai perguruan tinggi dengan jumlah penduduk keseluruhan pada negara tersebut?

Penyelesaian:
\[
\text{penduduk yang tidak bisa sekolah} = 70\% \times 57\% = \frac{3,990}{10,000}
\]

Penyelesaian:
\[
\begin{align*}
\text{badan} & = 5 \\
\text{kaki} & = 8 \\
\text{kepala} & = 1 \\
\text{badan} & = 4
\end{align*}
\]

kepala/kaki=5/32

\[
\begin{align*}
\text{kepala} & = \frac{5}{32} \\
\text{kaki} & = \frac{32}{8} \\
\text{seluruh} & = 1 + \frac{5}{8} + \frac{5}{32} = \frac{171}{32} = 53,90 > 20\% \text{ (normal)}
\end{align*}
\]

9. Pada suatu kelas yang terdiri atas 40 siswa, 45% senang mata pelajaran Fisika, 40% senang mata pelajaran Bahasa Inggris, dan 30% tidak senang kedua-duanya. Dari 50 % siswa yang senang kedua mata pelajaran tersebut masuk dalam 10
peringkat teratas dalam sekolah tersebut. Tentukan banyaknya siswa yang senang kedua mata pelajaran dan masuk dalam 10 peringkat teratas.

Penyelesaian:
Banyaknya siswa yang senang kedua mata pelajaran adalah 6. Banyaknya siswa yang senang kedua mata pelajaran dan masuk dalam 10 peringkat teratas adalah 3.

10. Sebuah mobil melakukan perjalanan dari kota A menuju kota B yang berjarak 200 km. Pada 80 km pertama mobil tersebut melaju dengan kecepatan 50 km/jam, 80 km selanjutnya mobil tersebut menaikkan kecepatannya sebesar 60% dan sisa perjalananannya dia menurunkan kecepatannya sebesar x%. Jika mobil tersebut berangkat dari kota A pada pukul 08.24 dan dia menginginkan tiba di kota B pada pukul 12.00, tentukan nilai x.

Penyelesaian:
Gunakan rumus kecepatan
\[
\text{jarak} = \frac{\text{kecepatan}}{\text{waktu}}
\]
Jawaban
\[x = 50\]

11. Pada suatu pemilihan umum yang terdiri dari dua kandidat \(x\) dan \(y\). Ternyata setelah dilakukan perhitungan 40% penduduk memilih kandidat \(x\), 35% penduduk memilih kandidat \(y\), dan 10% penduduk salah melakukan pencoblosan. Dari 20% penduduk yang Golput ternyata adalah mahasiswa. Tentukan persentase mahasiswa yang golput terhadap jumlah penduduk.

Penyelesaian:
prosentase mahasiswa yang golput terhadap jumlah penduduk adalah 3%.

12. Andi menabungkan uangnya pada Bank \(x\). Andi mulai menabung pada bulan Januari yaitu menabung sebesar Rp200.000,00. Pada bulan berikutnya Andi menabung \(\frac{5}{8}\) kali lipat dari bulan sebelumnya. Untuk keperluan sekolah, pada bulan Maret Andi mengambil uangnya sebesar Rp135.580,00. Jika bank tersebut memberi bunga sebesar 2% untuk setiap akhir bulan, tentukan saldo tabungan Andi pada akhir bulan Maret?

Penyelesaian:
Saldo Januari = 200.000 + 2% \times 200.000 = 204.000
Saldo Februari = 329.000 + 2% \times 329.000 = 335.580
Saldo Maret = 200.000 + 2% \times 200.000 = 204.000
Jawaban:
Rp204.000,00
13. Pada suatu pemilihan umum yang terdiri dari dua kandidat x dan y. Ternyata setelah dilakukan perhitungan 40% penduduk memilih kandidat x, 35% penduduk memilih kandidat y, dan 10% dari penduduk adalah golput. Jika syarat menjadi pemenang adalah harus unggul 10% dari lawannya dan pengukuran persentasenya dihitung berdasarkan penduduk yang melakukan pemilihan umum saja (Golput tidak dihitung). Apakah kandidat x bisa disimpulkan sebagai pemenang?

Penyelesaian:

x unggul 5,55 % atas y, jadi x tidak bisa disimpulkan sebagai pemenang.

14. Pada suatu Super Market melakukan potongan harga sebesar 60% untuk setiap pembelian baju. Ani berbelanja di supermarket tersebut, dia membeli 3 baju. Ternyata ada pemotongan tambahan sebesar 30% jika membeli 3 baju. Jika harga setiap baju sebelum pemotongan harga adalah Rp150.000,00. Tentu saja seberapa besar uang yang harus dibayar Ani?

Penyelesaian:

Rp126.000,00

15. Nisa mencoba membuat minuman baru dengan cara mencampurkan sirup, soda dan susu dengan perbandingan 1 : 2 : 5. Jika banyaknya minuman baru tersebut 4 liter maka berapa liter banyaknya sirup, soda dan susu tersebut?

Penyelesaian:

Sirup: 0,5 liter Soda: 1 liter Susu: 2,5 liter

Proyek 3

- Buatlah kelompok yang terdiri 10 orang.
- Tiap-tiap kelompok membuat angket mata pelajaran apa yang paling disukai siswa/siswi di sebuah kelas. Untuk tiap kelompok, berikan angket ke satu kelas VII, satu kelas VIII dan satu kelas IX.
- Catatlah mata pelajaran apa yang disukai orang dan buatlah tabel untuk tiap kelas.
- Hitunglah berapa bagian dari setiap mata pelajaran yang disukai untuk tiap-tiap kelas VII, kelas VIII dan kelas IX. Nyatakan pecahan tersebut dalam desimal dan persen.
- Jika sekarang kelas VII, kelas VIII dan kelas IX digabung, hitunglah berapa bagian dari setiap mata pelajaran yang disukai. Nyatakan pecahan tersebut dalam desimal dan persen. Apakah ada perubahan persentase mata pelajaran yang disukai? Apa yang dapat siswa simpulkan?
Uji Kompetensi 3

Perbandingan Bertingkat

1. Pada suatu negara dilakukan sensus penduduk ternyata 20% dari penduduknya masih tergolong miskin. Penduduk yang tergolong kaya semuanya bisa sekolah sampai perguruan tinggi. Dari keseluruhan penduduk yang sekolah sampai perguruan tinggi 10% adalah penduduk tergolong miskin. Berapakah perbandingan penduduk miskin yang tidak bisa sekolah sampai perguruan tinggi dengan jumlah penduduk keseluruhan pada negara tersebut?

Penyelesaian:

Miskin = 20% × jumlah penduduk
Kaya = 80% × jumlah penduduk

Penduduk sekolah sampai perguruan tinggi = \frac{8}{9} \times \text{jumlah penduduk}

Jawaban:

penduduk miskin yang tidak bisa sekolah = \frac{1}{90} \times \text{jumlah penduduk}

Penyelesaian:

Panjang kepala = 15\% \times \text{seluruh tubuh}

Badan = \frac{5}{7} \times \text{kaki}

Badan + kaki = 85\% \times \text{seluruh tubuh}

Badan = \frac{5}{12} \times 85\% \times \text{seluruh tubuh}

Jawaban:

\frac{45}{12} \% = 35,42\%

3. Pada suatu negara dilakukan sensus penduduk ternyata 20% dari penduduknya masih tergolong miskin. Dari penduduk yang tergolong kaya 5% tidak sekolah sampai tingkat atas. Selain itu, dari keseluruhan penduduk yang sekolah sampai tingkat atas 10% adalah penduduk tergolong miskin. Berapakah perbandingan penduduk miskin yang tidak bisa sekolah sampai tingkat menengah atas dengan jumlah penduduk keseluruhan pada negara tersebut?
Penyelesaian:

Miskin = 20% × jumlah penduduk
Kaya = 80% × jumlah penduduk

Penduduk sekolah sampai perguruan tinggi = \(\frac{76}{90}\) × jumlah penduduk

Jawaban:

dayak miskin yang tidak bisa sekolah = \(\frac{104}{900}\) × jumlah penduduk

4. Pada suatu kelas yang terdiri 40 siswa, 40% senang mata pelajaran Matematika, 35% senang mata pelajaran Bahasa Indonesia, dan 10% senang kedua-duanya. Dari \(\frac{3}{14}\) siswa yang tidak senang kedua mata pelajaran tersebut masuk dalam 10 peringkat teratas dalam sekolah tersebut. Tentukan banyaknya siswa yang tidak senang kedua mata pelajaran dan masuk dalam 10 peringkat teratas.

Penyelesaian:

siswa yang tidak senang kedua mata pelajaran = 35% × 40 = 14.

Jawaban:

banyaknya siswa yang tidak senang kedua mata pelajaran dan masuk dalam 10 peringkat teratas adalah 3 orang.

5. Sebuah mobil melakukan perjalanan dari kota A menuju kota B yang berjarak 200 km. Pada 80 km pertama mobil tersebut melaju dengan kecepatan 50 km/jam, 80 km selanjutnya mobil tersebut menaikkan kecepatannya sebesar 60% dan sisa perjalananannya dia menurunkan kecepatannya sebesar 25%. Tentukan lamanya perjalanan dari kota A dan B.

Penyelesaian:

Gunakan rumus kecepatan yaitu

\[\text{jarak} = \text{kecepatan} \times \text{waktu} \]

Jawaban:

\[\frac{49}{15} \text{ jam} \]

6. Pada suatu pemilihan umum yang terdiri dari dua kandidat x dan y. Ternyata setelah dilakukan perhitungan 50% penduduk memilih kandidat x, 25% penduduk memilih kandidat y, dan 10% dari penduduk adalah golput. Jika syarat menjadi pemenang adalah harus unggul 10% dari lawannya dan pengukuran persentasenya dihitung berdasarkan penduduk yang melakukan pemilihan umum saja (Golput tidak dihitung). Kemudian ternyata kelompok dari kandidat y tidak setuju dengan hasil tersebut dan mengajukan pemilu ulang karena menduga terjadi kecurangan, mereka beranggapan hasil yang sebenarnya adalah 45% penduduk memilih
kandidat \(x \), 30% penduduk memilih kandidat \(y \), dan 10% dari penduduk adalah golput. Apakah usulan mereka untuk melakukan pemilu ulang bisa diterima? (usulan diterima jika pemenangnya berubah)

Penyelesaian:
Prosentase yang diperoleh terhadap yang memilih (dugaan kelompok \(y \))

\[
\text{Pemilih} \ x = \frac{45}{90} = 0.5 \\
\text{Pemilih} \ y = \frac{30}{90} = 0.333 \\
\text{Selisih} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} = 16.67\%
\]

Tidak perlu dilakukan pemilihan ulang.

7. Sebuah mobil \(x \) melakukan perjalanan dari kota \(A \) menuju kota \(B \) yang berjarak 200 km. Pada 80 km pertama mobil tersebut melaju dengan kecepatan 50 km/jam, 80 km selanjutnya mobil tersebut menaikkan kecepatannya sebesar 60% dan sisa perjalanan nya dia menurunkan kecepatannya sebesar 25%. Disisi lain mobil \(y \) melakukan perjalanan dari kota \(B \) menuju kota \(A \). Pada 80 km pertama mobil tersebut melaju dengan kecepatan 50 km/jam, 80 km selanjutnya mobil tersebut menaikkan kecepatannya sebesar 60% dan sisa perjalanannya dia menurunkan kecepatannya sebesar 25%. Jika mobil \(x \) berangkat dari kota \(A \) pada pukul 08.36 dan mobil \(y \) berangkat dari kota \(B \) pada pukul 08.50 maka tentukan waktu mereka tiba di tempat tujuan.

Penyelesaian:
Mobil \(x \) tiba pada pukul 11.52 dan mobil \(y \) tiba pada pukul 12.06.

8. Andi menabungkan uangnya pada Bank \(x \). Andi mulai menabung pada bulan Januari yaitu menabung sebesar Rp.100.000,00. Pada bulan berikutnya Andi menabung \(\frac{2}{5} \) kali lipat dari bulan sebelumnya. Bulan Maret Andi menabung sebesar 80% dari saldo bulan sebelumnya. Tentukan saldo tabungan Andi pada akhir bulan maret?

Penyelesaian:
Saldo tabungan Andi pada akhir bulan maret adalah Rp252.000,00.

9. Seorang pedagang membeli sebuah kemeja dengan harga Rp.100.000,00. Kemudian barang ini dijual kembali. Supaya pelanggan tertarik pedagang memberikan tulisan pada barang dagangannya “Diskon 60%”. Dengan harga berapa dia harus melabelkan barang dagangannya supaya dia mendapatkan keuntungan 40% dari harga beli?

Penyelesaian:
Rp350.000,00
10. Andi menabungkan uangnya pada Bank x. Andi mulai menabung pada bulan Januari yaitu menabung sebesar Rp200.000,00. Pada bulan berikutnya Andi menabung \(\frac{5}{8} \) kali lipat dari bulan sebelumnya. Bulan Maret Andi menabung sebesar 80% dari saldo bulan sebelumnya. Jika bank tersebut memberi bunga sebesar 2% untuk setiap akhir bulan, tentukan saldo tabungan Andi pada akhir bulan maret?

Penyelesaian:

Saldo Januari = 200.000 + 2% \(\times \) 200.000 = 204.000

Saldo Februari = 329.000 + 2% \(\times \) 329.000 = 335.580

Saldo Maret = 604.044 + 2% \(\times \) 604.044 = 616.124,84

Jawaban:

Rp616.124,84

Penyelesaian:

360 orang

Penyelesaian:

4 orang

Penyelesaian:

36

Penyelesaian:

5 tahun lagi

15. Tahun ini perbandingan usia Rio dan ibunya adalah 7 : 1 dan jumlah usianya 32 tahun. Berapa tahun lagi perbandingan usia Rio dan ibunya menjadi 5 : 1?
Penyelesaian:
2 tahun lagi

16. Pada sebuah perusahaan 46% pegawai adalah laki-laki. Jika 60% pegawai sudah menikah dan 70% dari pegawai yang sudah menikah adalah laki-laki, berapakah dari pegawai yang belum menikah adalah pegawai perempuan?

Penyelesaian:
36%

17. Perbandingan banyak pengunjung laki-laki dan perempuan dalam suatu bazar adalah 7 : 4. Setelah \(\frac{5}{8} \) bagian pengunjung laki-laki keluar dan 20 orang pengunjung perempuan datang, perbandingan pengunjung laki-laki dan perempuan menjadi 1 : 2. Berapakah banyak pengunjung mula-mula?

Penyelesaian:
176 orang

18. Tamu suatu acara syukuran terdiri orang dewasa dan anak-anak, \(\frac{2}{5} \) bagian adalah orang dewasa. Jumlah anak-anak 60 orang lebih banyak dari pada orang dewasa. Perbandingan banyak tamu anak laki-laki dan perempuan adalah 4 : 5. Berapa banyak tamu anak laki-laki yang hadir?

Penyelesaian:
80 anak

19. Fahri dan Farhan masing-masing mampu menghabiskan segelas jus jambu dalam waktu 25 detik. Sedangkan Zaki membutuhkan waktu 50 detik untuk melakukan hal yang sama. Jika ketiganya diminta bergabung untuk menghabiskan 4½ gelas jus jambu bersama-sama, tetapi Zaki tidak mau bergabung untuk gelas keempat dan ke lima, berapa lama waktu yang mereka butuhkan untuk menghabiskan 4½ jus tersebut?

Penyelesaian:
48,75 detik

 a. Tabungan Anis lebih banyak daripada tabungan Dian
 b. Jumlah tabungan Dian dan Kinar sama dengan jumlah tabungan Anis dan Benny
 c. Tabungan Dian merupakan penjumlahan tabungan Anis, Benny, dan Kinar
 d. Tabungan terbanyak adalah tabungan Anis
 e. Kinar mempunyai tabungan paling sedikit.

Penyelesaian:
252 orang

Penyelesaian:
15 orang

Penyelesaian:
21

Penyelesaian:
4 tahun lagi

5. Tahun ini perbandingan usia Rio dan adiknya adalah $5 : 3$ dan jumlah usianya 32 tahun. Berapa tahun lagi perbandingan usia Rio dan adiknya menjadi $3 : 2$?

Penyelesaian:
4 tahun lagi
Kata Kunci
- Kekongruenan
- Faktor Skala
- Sebangun

Kompetensi Dasar
1.1 Menghargai dan menghayati ajaran agama yang dianutnya.
2.1 Menunjukkan sikap logis, kritis, analitik dan kreatif, konsisten dan teliti, bertanggung jawab, responsif, dan tidak mudah menyerah dalam memecahkan masalah sehari-hari, yang merupakan pencernaan sikap positif dalam bermatematika.
3.6 Memahami konsep kekongruenan dan kesebangunan geometri melalui pengamatan.
4.5 Menelekaikan permasalahan nyata hasil pengamatan yang terkait penerapan kekongruenan dan kesebangunan.

Sumber: Dokumen Kemdikbud
Coba amatilah pigura foto presiden RI dan wakilnya yang ada di kelasmu. Apakah bentuk dan ukurannya sama? Bagaimana dengan pigura tersebut dibanding pigura lukisan atau dibanding dengan papan tulis yang ada di kelasmu, apakah sebangun?
Pernahkah siswa membayangkan bagaimana memperkirakan ukuran tinggi pohon, tiang bendera, atau gedung tanpa harus mengukurnya secara langsung? Bagaimana mengukur lebar sungai atau danau tanpa harus mengukurnya secara langsung? Semua itu merupakan beberapa contoh manfaat konsep kekongruenan dan kesebangunan geometri dalam kehidupan sehari-hari.
Nah, masalah-masalah tersebut di atas dapat diselesaikan dengan konsep kekongruenan dan kesebangunan. Konsep ini akan kita pelajari bersama di Bab 4 ini.

Pengalaman Belajar
1. Mengidentifikasi, mendeskripsikan, menjelaskan sifat atau karakteristik bendagengung yang kongruen atau sebangun berdasarkan hasil pengamatan.
2. Membuat model, menggambar atau melukis, dan menentukan bangun-bangun datar yang kongruen atau sebangun dengan berbagai cara dan posisi.
3. Menguji dua segitiga sebangun dan dua segitiga kongruen.
4. Menentukan panjang sisi, besar sudut, atau unsur lainnya berkaitan dengan bangun datar yang kongruen atau sebangun dan menyelesaikan permasalahan nyata yang terkait dengan konsep kekongruenan dan kesebangunan.
Kekongruenan dan Kesebangunan Bangun Datar

<table>
<thead>
<tr>
<th>Syarat Kekongruenan Bangun Datar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kekongruenan Segitiga</td>
</tr>
<tr>
<td>Syarat Kekongruenan Segitiga</td>
</tr>
<tr>
<td>Syarat: Sisi-Sisi yang Berkesesuaian Senilai</td>
</tr>
<tr>
<td>Syarat: Sisi Sisi Sisi</td>
</tr>
<tr>
<td>Syarat: Sudut Sisi Sudut</td>
</tr>
<tr>
<td>1. Perbandingan Sisi-Sisi yang Berkesesuaian Senilai</td>
</tr>
<tr>
<td>2. Dua Pasang Sudut yang Berkesesuaian Sama Besar</td>
</tr>
</tbody>
</table>

Menghitung Panjang Sisi dan Besar Sudut dari Segitiga-Segitiga Sebangun atau Kongruen
Thales adalah seorang filsuf Yunani yang hidup pada abad ke-6 SM. Ia (624-546 SM) lahir di kota Miletus. Awalnya, Thales adalah seorang pedagang, profesi yang membuatnya sering melakukan perjalanan. Kondisi kota Miletos yang cukup makmur memungkinkan orang-orang di sana untuk mengisi waktu dengan berdiskusi dan berpikir tentang segala sesuatu yang ada di sekitar mereka, sehingga banyak para filsuf Yunani pertama yang lahir di tempat ini. Pemikiran Thales dianggap sebagai kegiatan berfilsafat pertama karena ia mencoba menjelaskan dunia dan gejala-gejala di dalamnya dengan menggunakan rasio manusia dan tidak bergantung pada mitos yang berkembang di masyarakat. Ia juga dikenal sebagai salah satu dari Tujuh Bijaksana (dalam bahasa Yunani disebut dengan hoi hepta saphio), yang oleh Aristoteles diberi gelar 'filsuf yang pertama'.

Thales juga dikenal sebagai ahli geometri, astronomi, dan politik. Pada bidang matematika, Thales mengungkapkan salah satu gagasan yang cukup fenomenal, yakni di bidang kesebangunan. Diceritakan bahwa dia dapat menghitung tinggi piramida dengan menggunakan bantuan dari bayangan suatu tongkat. Thales menggunakan kenyataan bahwa segitiga yang dibentuk oleh piramida dan bayangannya sebangun dengan segitiga kecil yang dibentuk oleh tongkat dan bayangannya. Dengan menggunakan perbandingan kesebangunan dua segitiga itu ia dapat memperkirakan tinggi dari piramida tersebut.

Hikmah yang bisa diambil
1. Thales adalah orang yang mempunyai rasa ingin tahu yang sangat tinggi. Dia selalu memikirkan setiap kejadian alam yang ada di sekitarnya dan mencari tahu penyebabnya. Ia mencoba memprediksi gerhana matahari dengan menggunakan ilmu pengetahuan yang telah dia pelajari tanpa bersandar pada mitos yang ada.
2. Tidak mudah puas terhadap sesuatu yang sudah didapatkan, sehingga terus berfikir melakukan inovasi untuk menemukan sesuatu yang baru. Hal ini bisa kita lihat dari gagasannya dalam mengukur tinggi piramida tanpa perlu mengukur secara langsung, tapi dapat dilakukan dengan menggunakan bantuan dari bayangan suatu tongkat dan konsep kesebangunan yang dikemukakannya.
3. Matematika adalah ilmu yang menarik untuk kita pelajari, bukan ilmu yang menyeramkan seperti dikatakan sebagian orang. Karena telah banyak sejarah yang menceritakan tentang peran matematika dalam memajukan peradaban manusia, salah satunya adalah konsep kesebangunan dari Thales yang berguna dalam kehidupan manusia saat ini.
A. Kekongruenan Bangun Datar

Setelah mempelajari Subbab A ini diharapkan siswa dapat menjawab pertanyaan penting di bawah ini.

Bagaimana siswa dapat mengidentifikasi dua bangun datar dikatakan kongruen?

Pertanyaan

Penting

Supaya siswa dapat mengetahui dan memahami jawaban pertanyaan diatas silakan amati gambar-gambar di bawah ini dengan seksama.

Kegiatan 4.1

Mengidentifikasi Dua Benda Kongruen atau Tidak

Dalam Kegiatan 4.1 ini selanjutnya siswa diminta menjelaskan dengan kalimatnya sendiri mengapa dua benda di katakan kongruen dan mengapa dikatakan tidak kongruen. Siswa juga diminta mencari contoh benda-benda yang kongruen di sekitanya. Siswa diminta memaparkan hasil diskusi kelompoknya di depan kelas (persilakan salah satu kelompok saja, tidak harus semua kelompok).

Kegiatan 4.1

Mengidentifikasi Dua Benda Kongruen atau Tidak

Kumpulkanlah data tinggi dan berat badan teman sekelasmu.
Minta siswa untuk mengamati gambar di bawah ini dengan seksama.

(a) Dua gambar mobil yang kongruen
(b) Dua gambar mobil yang tidak kongruen

Sumber: Dokumen Kemdikbud

Gambar 4.1 Sepasang mobil kongruen dan tidak kongruen

Perhatikan pula pasangan di bawah ini dengan teliti.

(a) Dua gambar mobil yang kongruen
(b) Dua gambar mobil yang tidak kongruen

Sumber: Dokumen Kemdikbud

Gambar 4.2 Sepasang kursi kongruen dan tidak kongruen

(a) Lima gambar pensil yang kongruen
(b) Dua gambar pensil tidak kongruen

Sumber: Dokumen Kemdikbud

Gambar 4.3 Pensil-pensil yang kongruen dan tidak kongruen

Amati pula Gambar 4.4 dan 4.5 di bawah ini.

Sumber: Dokumen Kemdikbud

Gambar 4.4 Dua pigura lukisan yang kongruen
Setelah mengamati Gambar 4.1 sampai dengan Gambar 4.5, menurut siswa mengapa dua bangun atau lebih dikatakan kongruen?

Coba carilah contoh lainnya di sekitar. Kemudian diskusikan dengan teman dan paparkan hasil Kegiatan 4.1 dari kelompok ini kepada teman sekelas.

Siswa bersama teman sebangku atau bersama kelompoknya diminta melakukan Kegiatan 4.2. Dengan mengamati gambar-gambar (berupa bentuk geometri secara matematika) yang ada pada Kegiatan 4.2 dan melakukan Kegiatan 4.2 ini guru dapat menuntun pemahaman siswa tentang konsep syarat dua bangun di katakan kongruen. Alternatif cara untuk mengetahui dua bangun kongruen adalah dengan menumpuk dua bangun tersebut dengan posisi yang sama, jika dua bangun itu saling menutupi berarti dua bangun itu kongruen.

Selanjutnya siswa diminta memaparkan hasil diskusi kelompoknya di depan kelas. (persilakan salah satu kelompok saja, tidak harus semua kelompok).
Perhatikanlah beberapa pasangan bangun berikut ini.

(a) Dua persegipanjang kongruen
(b) Dua persegi kongruen
(c) Tiga bintang kongruen
(d) Tiga tabung kongruen

Gambar 4.6 Pasangan bangun yang kongruen

Gambar di bawah ini adalah contoh pasangan bangun tidak kongruen.

(a) Dua persegipanjang tidak kongruen
(b) Dua segiempat tidak kongruen
(c) Dua bintang tidak kongruen
(d) Dua tabung tidak kongruen

Gambar 4.7 Pasangan bangun yang tidak kongruen
Diskusikan dengan kelompok dan paparkan ke teman sekelas.

1. Mengapa bangun-bangun pada Gambar 4.6 kongruen, sedangkan bangun-bangun pada Gambar 4.7 tidak kongruen?

2. Syarat apakah yang dipenuhi oleh bangun-bangun pada Gambar 4.6 yang tidak dipenuhi oleh bangun-bangun pada Gambar 4.7?

Kegiatan 4.3

Mendapatkan Dua Bangun Kongruen dengan Translasi

Selanjutnya siswa diminta memaparkan hasil diskusi kelompoknya di depan kelas. (persilakan salah satu kelompok saja, tidak harus semua kelompok).

Ayo Kita Mencoba

Perhatikanlah gambar di bawah ini.

![Gambar 4.8](image)

1. Salinlah persegi panjang $ABCD$ pada Gambar 4.8 pada kertas lain kemudian guntinglah.

2. Geser (tranlasikan) persegi panjang $ABCD$ yang siswa buat tadi sehingga titik A berimpit dengan E, dan titik B berhimpit dengan titik F. Apa yang terjadi dengan titik-titik lain?
3. Apakah persegi panjang $ABCD$ tepat menempati (menutupi) persegi panjang $EFGH$?

Jika benar setiap titik pada persegi panjang $ABCD$ dapat menempati titik-titik persegi panjang $EFGH$, maka dikatakan bahwa persegi panjang $ABCD$ kongruen dengan persegi panjang $EFGH$.

Bangun $ABCD$ kongruen dengan $EFGH$ disimbolkan dengan $ABCD \cong EFGH$.

Kegiatan 4.4

Mendapatkan Dua Bangun Kongruen dengan Rotasi

Selanjutnya siswa diminta memaparkan hasil diskusi kelompoknya di depan kelas. (persilakan salah satu kelompok saja, tidak harus semua kelompok).

Kegiatan 4.4

Mendapatkan Dua Bangun Kongruen dengan Rotasi

Ayo Kita Mencoba

Lakukan kegiatan di bawah ini bersama teman sebangku.

Perhatikan gambar di bawah ini.

1. Jiplaklah bangun trapesium $PQRS$ (lihat Gambar 4.9) pada kertas lain lalu guntinglah.
2. Putarlah (rotasikan) trapesium yang siswa buat dan geserlah menuju trapesium $TUWV$.

Apakah trapesium $PQRS$ tepat menempati trapesium $ABCD$?

Jika benar, maka $PQRS \cong ABCD$.

Gambar 4.9
Berdasarkan Kegiatan 4.3 dan 4.4 yang sudah siswa kerjakan bersama teman nya, diskusikan dengan teman sebangku apa hubungan tranformasi dengan bangun yang kongruen. Silakan paparkan kepada teman sekelas.

Kegiatan 4.5 Syarat Dua Bangun Segibanyak (Poligon) Kongruen

Selanjutnya siswa diminta memaparkan hasil diskusi kelompoknya di depan kelas. (persilakan salah satu kelompok saja, tidak harus semua kelompok).

Perhatikan gambar di bawah ini.

![Gambar 4.10](image)

1. Ukurlah panjang sisi dan besar sudut-sudut segiempat \(ABCD\) dan segiempat \(PQRS\). Tuliskan pada Gambar 4.10.
2. Tuliskan sisi-sisi yang bersesuaian. Bagaimana panjang sisi-sisi yang bersesuaian tersebut?
3. Tuliskan sudut-sudut yang bersesuaian. Bagaimana besar sudut-sudut yang bersesuaian tersebut?

6. Carilah benda-benda di sekitarmu yang permukaannya kongruen. Selidikilah apakah syarat-syarat yang siswa berikan untuk dua bangun kongruen terpenuhi?
Berdasarkan Kegiatan 4.5, kesimpulan yang siswa peroleh adalah:

Dua bangun segibanyak (poligon) dikatakan kongruen jika memenuhi dua syarat, yaitu:

1. Sisi-sisi yang bersesuaian sama panjang.
2. Sudut-sudut yang bersesuaian sama besar.

Apakah jika sisi-sisi yang bersesuaian sama panjang sudah menjamin dua bangun kongruen?

Apakah jika sudut-sudut yang bersesuaian sama sudah menjamin dua bangun kongruen?

Materi Esensi

Syarat Dua Bangun Datar Kongruen

Dua bangun yang mempunyai bentuk dan ukuran yang sama dinamakan kongruen.
Dua bangun segi banyak (poligon) dikatakan kongruen jika memenuhi dua syarat, yaitu:

(i) sisi-sisi yang bersesuaian sama panjang

(ii) sudut-sudut yang bersesuaian sama besar.

Dia: Abu-abu

Ayo Kita Menalar

Sisi-sisi yang bersesuaian:

- $\angle A$ dan $\angle J \rightarrow \angle A = \angle J$
- $\angle B$ dan $\angle K \rightarrow \angle B = \angle K$
- $\angle C$ dan $\angle L \rightarrow \angle C = \angle L$
- $\angle D$ dan $\angle M \rightarrow \angle D = \angle M$

Sudut-sudut yang bersesuaian:

- AB dan $JK \rightarrow AB = JK$
- BC dan $KL \rightarrow BC = KL$
- CD dan $LM \rightarrow CD = LM$
- DA dan $MJ \rightarrow DA = MJ$
Jika bangun $ABCD$ dan $JKLM$ memenuhi kedua syarat tersebut, maka bangun $ABCD$ dan $JKLM$ kongruen, dinotasikan dengan $ABCD \cong JKL$.

Jika bangun $ABCD$ dan $JKLM$ tidak memenuhi kedua syarat tersebut maka bangun $ABCD$ dan $JKLM$ tidak kongruen, dinotasikan dengan $ABCD \not\cong JKL$.

Catatan:
Ketika menyatakan dua bangun sebangun sebaiknya dinyatakan berdasarkan titik-titik sudut yang bersesuaian dan berurutan, contohnya:

\[ABCD \sim JKLM \] atau \[BADC \sim KJML \] atau \[CDAB \sim LMJK \]

Contoh 4.1 Menentukan Sisi-sisi dan Sudut-sudut yang Bersesuaian

Ajaklah siswa untuk mengamati dan memahami Contoh 4.1 untuk menentukan sisi-sisi dan sudut-sudut yang bersesuaian jika diberikan gambar dua bangun yang kongruen. Guru memandu siswa untuk memahaminya.

Contoh 4.1 Menentukan Sisi-sisi dan Sudut-sudut yang Bersesuaian

Segi empat $ABCD$ dan $WXYZ$ pada gambar di bawah kongruen. Sebutkan sisi-sisi dan sudut-sudut yang bersesuaian

Alternatif Penyelesaian:
Sisi-sisi yang bersesuaian:
\[AB \text{ dan } WX \]
\[BC \text{ dan } XY \]
\[CD \text{ dan } YZ \]
\[DA \text{ dan } WZ \]

Sudut-sudut yang bersesuaian:
\[\angle A \text{ dan } \angle W \]
\[\angle B \text{ dan } \angle X \]
\[\angle C \text{ dan } \angle Y \]

172 Buku Guru Kelas IX SMP/MTs
Contoh 4.2

Mengidentifikasi Dua Bangun Kongruen

Ajaklah siswa untuk mengamati dan memahami Contoh 4.2 untuk mengidentifikasi bangun manakah yang konruen di antara beberapa gambar yang diberikan. Guru memandu siswa untuk memahaminya.

Contoh 4.2

Mengidentifikasi Dua Bangun Kongruen

Manakah persegi di samping yang kongruen? Jelaskan.

Alternatif Penyelesaian:

Dua bangun dikatakan kongruen jika memenuhi dua syarat, yaitu:

(i) *sudut-sudut yang bersesuaian sama besar*

Setiap persegi mempunyai empat sudut siku-siku, sehingga sudut-sudut yang bersesuaian pada persegi (a), (b) dan (c) besarnya pasti sama.

(ii) *sisi-sisi yang bersesuaian sama panjang*

Persegi (a) dan persegi (b)

Panjang setiap sisi persegi (a) adalah 8 cm. Panjang setiap sisi persegi (b) adalah 9 cm. Jadi, sisi-sisi yang bersesuaian persegi (a) dan (b) tidak sama panjang.

Persegi (b) dan persegi (c)

Panjang setiap sisi persegi (b) adalah 9 cm. Panjang setiap sisi persegi (c) adalah 8 cm. Jadi, sisi-sisi yang bersesuaian persegi (b) dan (c) tidak sama panjang.

Persegi (a) dan persegi (c)

Panjang setiap sisi persegi (a) adalah 8 cm. Panjang setiap sisi persegi (c) adalah 8 cm. Jadi, sisi-sisi yang bersesuaian persegi (a) dan (c) sama panjang.

Berdasarkan (i) dan (ii) di atas, maka persegi yang kongruen adalah persegi (a) dan (c).
Contoh 4.3
Menentukan Panjang Sisi dan Besar Sudut yang Belum Diketahui

Ajaklah siswa untuk mengamati dan memahami Contoh 4.3 untuk menentukan panjang sisi-sisi dan sudut-sudut yang belum diketahui jika diberikan gambar dua bangun yang kongruen dan beberapa ukuran sisi dan sudutnya diberikan. Guru memandu siswa untuk memahaminya.

Contoh 4.3
Menentukan Panjang Sisi dan Besar Sudut yang Belum Diketahui

Perhatikan gambar trapesium $ABCD$ dan $PQRS$ yang kongruen di bawah ini.

![Diagram trapesium](image)

a. Jika panjang sisi $AB = 40$ cm, $BC = 21$ cm, $RS = 16$ cm, dan $PS = 15$ cm, tentukan panjang sisi AD, DC, PQ, dan QR.

b. Jika besar $\angle A = 60^\circ$, $\angle B = 40^\circ$. Berapakah besar $\angle R$ dan $\angle S$?
(selanjutnya, besar $\angle A$ ditulis dengan $m\angle A$, seperti yang sudah siswa kenal di kelas 7 dan 8)

Alternatif Penyelesaian:

Diketahui: bangun $ABCD \cong PQRS$, berarti

- sisi-sisi yang bersesuaian sama panjang
- sudut-sudut yang bersesuaian sama besar

a. Untuk menentukan panjang sisi AD, DC, PQ, dan QR, tentukan terlebih dulu sisi-sisi yang bersesuaian yaitu:

$$AB \text{ dengan } PQ \rightarrow AB = PQ$$
$$BC \text{ dengan } QR \rightarrow BC = QR$$
$$DC \text{ dengan } SR \rightarrow DC = SR$$
$$AD \text{ dengan } PS \rightarrow AD = PS$$

(mengapa bukan $AB = SR$? Jelaskan)

Dengan demikian, jika $AB = 40$ cm, $BC = 21$ cm, $RS = 16$ cm, dan $PS = 15$ cm maka:
\[AD = PS = 15 \text{ cm} \]
\[DC = SR = 16 \text{ cm} \]
\[QR = BC = 21 \text{ cm} \]
\[PQ = AB = 40 \text{ cm} \]

b. Untuk menentukan besar \(\angle R \) dan \(\angle S \), tentukan terlebih dulu sudut-sudut yang bersesuaian yaitu:
\[
\begin{align*}
\angle A &= \angle P \rightarrow m\angle A = m\angle P \\
\angle B &= \angle Q \rightarrow m\angle B = m\angle Q \\
\angle C &= \angle R \rightarrow m\angle C = m\angle R \\
\angle D &= \angle S \rightarrow m\angle D = m\angle S
\end{align*}
\]

\[
\begin{align*}
m\angle P &= m\angle A = 60^\circ & \text{(Mengapa bukan} \ m\angle P = m\angle B? \ \text{Jelaskan)} \\
m\angle Q &= m\angle B = 40^\circ & \text{(Mengapa bukan} \ m\angle Q = m\angle A? \ \text{Jelaskan)} \\
m\angle R + m\angle Q &= 180^\circ & \text{(Mengapa? Ingat pelajaran kelas VII)} \\
m\angle R &= 180^\circ - m\angle Q \\
m\angle R &= 180^\circ - 40^\circ \\
m\angle R &= 140^\circ \\
m\angle S &= 180^\circ - m\angle P & \text{(Mengapa? Ingat pelajaran kelas VII)} \\
m\angle S &= 180^\circ - 60^\circ \\
m\angle S &= 120^\circ
\end{align*}
\]

Jadi \(m\angle R = 140^\circ \) dan \(m\angle S = 120^\circ \).

\[Ayo \ Kita \ Tinjau \ Ulang \]

Tentukan mana pasangan bangun berikut ini yang kongruen dan tidak kongruen? Jelaskan.

![Diagram pentagon dan romb]{fig.png}
Penyelesaian:
Pasangan bangun yang kongruen: (a)
Pasangan bangun yang tidak kongruen: (b), (c), dan (d)
(silakan diperiksa panjang sisi-sisi dan sudut-sudut yang bersesuaian)

Latihan 4.1 Bangun-bangun yang Kongruen

Sedangkan penilaian aspek sikap dan keterampilannya dapat diambil melalui pengamatan (penilaian guru, teman sejawat atau diri sendiri) pada saat siswa bersama kelompoknya melakukan kegiatan-kegiatan dalam Sub bab 4.D.

Latihan 4.1 Bangun-bangun yang Kongruen

1. Manakah di antara gambar di bawah ini yang kongruen?

(a) (b) (c) (d) (e)
(f) (g) (h) (i) (j)
Penyelesaian: a - j, b - i, c - f, d - g, e - h

2. Manakah di antara gambar di bawah ini yang kongruen?

Penyelesaian: a - d - h, b - e - i, c - f - g

Penyelesaian:
- pensil-pensil tersebut kongruen jika ternyata ukuran dan bentuknya sama.
- pensil-pensil tersebut tidak kongruen jika ternyata ukuran dan bentuknya berbeda.

4. Tuliskan pasangan bangun yang kongruen?

Penyelesaian: A - D - M, I - L, dan C - O

Penyelesaian:

(i) Sisi-sisi yang bersesuaian: $AB = NO, BC = OM, AC = NM$
Sudut-sudut yang bersesuaian: $\angle A = \angle N, \angle B = \angle O, \angle C = \angle M$

(ii) Sisi-sisi yang bersesuaian: $AB = MN, BC = NO, CD = OP, DA = PM$
Sudut-sudut yang bersesuaian: $\angle A = \angle M, \angle B = \angle N, \angle C = \angle O, \angle D = \angle P$

(iii) Sisi-sisi yang bersesuaian: $AB = DE, BC = EF, AC = DF$
Sudut-sudut yang bersesuaian: $\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$

(iv) Sisi-sisi yang bersesuaian: $AB = JK, BC = KL, CD = LM, DA = MJ$
Sudut-sudut yang bersesuaian: $\angle A = \angle J, \angle B = \angle K, \angle C = \angle L, \angle D = \angle M$

(v) Sisi-sisi yang bersesuaian: $JK = SR, KL = RQ, LM = QV, MN = VT, NJ = TS$
Sudut-sudut yang bersesuaian: $\angle J = \angle S, \angle K = \angle R, \angle L = \angle Q, \angle M = \angle V, \angle N = \angle T$

(vi) Sisi-sisi yang bersesuaian: $PQ = V, QR = VZ, RS = ZY, ST = YX, TP = XW$
Sudut-sudut yang bersesuaian: $\angle P = \angle W, \angle Q = \angle V, \angle R = \angle Z, \angle S = \angle Y, \angle T = \angle X$

Penyelesaian:
(a) dan (c) karena sisi-sisi yang bersesuaian sama panjang dan sudut-sudut yang bersesuaian sama besar.

7. Diketahui trapesium $ABCD$ dan trapesium $EFGH$ adalah kongruen.
Jika panjang sisi $AD = 12$ cm, $DC = 13$ cm dan $EF = 22$ cm maka tentukan panjang EH.

Penyelesaian: $EH = 15$ cm

8. Perhatikan gambar berikut ini.

Jika dua gambar di samping kongruen, tentukan nilai u dan v pada gambar tersebut.

Penyelesaian: besar $\angle u = 75^\circ$ dan $\angle v = 70^\circ$

9. Perhatikan dua gambar rumah tampak dari depan yang kongruen berikut ini.

a. Tentukan sisi-sisi yang bersesuaian.
b. Tentukan sudut-sudut yang bersesuaian.
c. Berapa panjang KJ, KL, dan LM?
d. Berapa keliling dan luas $JKLM$ jika jarak J ke LM adalah 7 m?
Penyelesaian:

a. Panjang \(AB = JK, \ BC = KL, \ CD = LM, \ DE = MN, \ EA = NJ \)
b. Besar \(\angle A = \angle J, \ \angle B = \angle K, \ \angle C = \angle L, \ \angle D = \angle M, \ \angle E = \angle N \)
c. Panjang \(KJ = 5 \text{ m}, \ KL = 4 \text{ m}, \ LM = 8 \text{ m} \)
d. Keliling \(JKLMN = 26 \text{ m}, \ \text{luas} \ JKLMN = 44 \text{ m}^2 \)

10. Analisis Kesalahan

Jelaskan dan perbaikilah pernyataan yang salah berikut.

"Kedua bangun di samping mempunyai empat sisi dan sisi-sisi yang bersesuaian sama panjang, jadi kedua bangun tersebut kongruen"

Penyelesaian:
Dua bangun itu tidak kongruen karena tidak sama bentuknya, gambar pertama persegi gambar kedua belah ketupat.

Atau
Dua bangun tersebut mempunyai empat sisi dan sisi-sisi yang bersesuaian sama panjang, tetapi sudut-sudut yang bersesuaian tidak sama besar, jadi dua bangun tersebut tidak kongruen.

11. Benar atau Salah

Trapesium pada gambar di bawah ini kongruen.

Tentukan pernyataan berikut ini benar atau salah. Jelaskan.

Besar \(\angle Z = 140^\circ \) (benar)

Besar \(\angle C = 40^\circ \) (salah)

Sisi \(WZ \) bersesuaian dengan sisi \(CB \) (benar)

Keliling bangun \(ABCD \) sama dengan keliling \(WXYZ \). (benar)

Luas bangun \(ABCD \) tidak sama dengan luas \(WXYZ \).
12. **Bernalar**

Gambar di samping menunjukkan dua cara menggaris satunya garis untuk membagi persegi berpangkat menjadi dua bangun yang kongruen. Gambarkan tiga cara lainnya.

Penyelesaian:

13. **Berpikir Kritis**

Contoh: dua persegi kongruen masing-masing dengan panjang sisi 3 cm, maka luas persegi masing-masing pasti sama yaitu 9 cm².

Contoh:

Luas segitiga dengan alas 6 cm dan tinggi 3 cm adalah 18 cm², luas persegi dengan panjang sisi 3 cm juga 9 cm² tetapi dua bangun tersebut tidak kongruen.
14. **Berpikir Kritis**

Penyelesaian: ditambah sebanyak $n - 1$ bangun

B. **Kekongruenan Dua Segitiga**

Pertanyaan Penting

Setelah mempelajari subbab ini diharapkan siswa dapat menjawab pertanyaan penting di bawah ini.

Pertanyaan Penting

Berdasarkan Sub Bab A, dua bangun dikatakan kongruen jika panjang sisi-sisi yang bersesuaian adalah sama dan besar sudut-sudut yang bersesuaian adalah sama. Sehingga, dua segitiga kongruen yaitu jika ketiga pasang sisi yang bersesuaian sama panjang dan ketiga pasang sudut yang bersesuaian sama besar.

Apakah perlu diuji keenam pasang unsur tersebut untuk menentukan dua segitiga kongruen atau tidak? Atau ada alternatif lain untuk menguji kekongruenan dua segitiga?

Untuk mengetahui jawabannya coba lakukan kegiatan-kegiatan berikut ini dengan teman sekelompokmu.
Kegiatan 4.6 Menguji Kekongruenan Segitiga dengan Kriteria Sisi – Sisi – Sisi

Sebelum melakukan Kegiatan 4.6 (pertemuan sebelumnya) siswa diminta membawa peralatan yang diperlukan, yaitu selembar kertas, pensil, batang lidi, penggaris, busur, dan gunting. Guru melakukan pendampingan dan pengamatan selama kegiatan berlangsung. Kegiatan 1 bertujuan agar siswa dapat menemukan konsep tentang dua segitiga dikatakan kongruen sisi-sisi yang bersesuaian sama panjang. Dikenal dengan kriteria sisi-sisi-sisi.

Guru dapat menginstruksikan setiap kelompok untuk melakukan Kegiatan 4.6 sampai dengan Kegiatan 4.9, jika waktu dan kondisi memungkinkan. Jika tidak memungkinkan tugas dapat dibagi yaitu 1 kelompok mengerjakan 1 atau 2 kegiatan. Siswa diberi kesempatan untuk berbagi atau mempresentasikan hasil investigasinya.

Kegiatan 4.6 Menguji Kekongruenan Segitiga dengan Kriteria Sisi – Sisi – Sisi

Sediakan alat dan bahan sebagai berikut:

1. Selembar kertas (kertas berpetak akan lebih memudahkan)
2. Pensil
3. Batang lidi
4. Penggaris
5. Gunting
6. Busur derajat

Lakukan kegiatan berikut ini.

1. Potonglah batang lidi menjadi 3 potong dengan ukuran-ukuran yang bisa dibentuk menjadi segitiga (ingat kembali tentang syarat panjang sisi segitiga di kelas VII). Misalnya: 5 cm, 6 cm, dan 7 cm. Kemudian bentuklah ketiga potongan lidi tersebut menjadi segitiga.
2. Salinlah segitiga yang terbentuk tersebut pada selembar kertas.
3. Ukurlah masing-masing besar sudut pada segitiga itu dengan busur.
4. Lakukan lagi langkah 1 sampai 3 oleh anggota yang lain di kelompokmu (dengan ukuran potongan lidi yang sama dengan di langkah 1).
5. Bandingkan dengan segitiga yang dihasilkan temanmu. Apakah siswa mendapatkan pasangan sudut-sudut yang bersesuaian sama besar?
6. Atau gunting salah satu dari gambar segitiga tersebut kemudian tempelkan pada segitiga satunya, apakah kedua segitiga itu tepat saling menutupi?
Tuliskan kesimpulan yang diperoleh.

Alternatif kegiatan pada Kegiatan 4.6 ini dapat juga siswa lakukan kegiatan di bawah ini:

Sediakan alat dan bahan sebagai berikut:

1. Selembar kertas
2. Pensil
3. Penggaris
4. Busur derajat
5. Jangka dan gunting

Lakukan kegiatan berikut ini.

1. Gambarlah \(\triangle ABC \) dan \(\triangle DEF \) dengan panjang sisi \(AB = DE, BC = EF, \) dan \(AC = DF \) pada selembar kertas dengan langkah sebagai berikut: (lihat gambar)
 a) Gambarlah garis \(k \) sebarang pada selembar kertas.
 b) Pada garis \(k \), buatlah segmen garis \(AB \) dan \(DE \), dengan \(AB = DE \).
 c) Dengan menggunakan jangka, lukislah dua busur lingkaran masing-masing berpusat di \(A \) dan \(D \), dengan jari-jari sama.
 d) Dengan menggunakan jangka, lukislah dua busur lingkaran masing-masing berpusat di \(B \) dan \(E \), dengan jari-jari sama. (jari-jari tidak harus sama dengan jari-jari pada langkah c)
 e) Beri label titik \(C \) dan \(F \) pada perpotongan kedua busur lingkaran di atas.

Hubungkan titik \(C \) dengan \(A \) dan \(B \) maka terbentuklah \(\triangle ABC \). Hubungkan titik \(F \) dengan \(D \) dan \(E \) maka terbentuklah \(\triangle DEF \).

Apakah siswa memperoleh panjang \(AB = DE, BC = EF, \) dan \(AC = DF \)?

2. Guntinglah \(\triangle DEF \) dan tumpukkan di atas \(\triangle ABC \), apakah kedua segitiga tersebut kongruen? Jelaskan.

Dari kegiatan di atas, kesimpulan apa yang siswa peroleh?

Dua segitiga kongruen jika dan hanya jika ketiga pasang sisi-sisi yang bersesuaian sama panjang. Dikenal dengan kriteria sisi-sisi-sisi.

Kegiatan 4.7
Menguji Kekongruenan Segitiga dengan Kriteria Sisi – Sudut – Sisi

Sediakan alat sebagai berikut:
1. Selembar kertas
2. Pensil
3. Penggaris
4. Gunting
5. Busur

Lakukan kegiatan berikut ini.

1. Gambarlah \(\triangle ABC \) dan \(\triangle DEF \) dengan panjang sisi \(AB = DE \), \(m \angle A = m \angle D \), dan \(AC = DF \) pada selembar kertas dengan langkah sebagai berikut: (lihat gambar)
 a) Gambarlah garis \(k \) sebarang pada selembar kertas.
 b) Pada garis \(k \), buatlah segmen garis \(AB \) dan \(DE \), dengan \(AB = DE \).
 c) Buatlah garis \(p \) melalui titik \(A \) dan buatlah garis \(n \) melalui titik \(D \), sedemikian hingga garis \(p \) sejajar dengan \(q \). Apakah \(m \angle A = m \angle D \)? Jelaskan.
 d) Buatlah segmen garis \(AC \) pada garis \(p \), dan segmen garis \(DF \) pada garis \(q \), sedemikian hingga panjang \(AC = DF \).
e) Hubungkan titik \(B \) dengan titik \(C \) dan juga hubungkan titik \(E \) dengan titik \(F \) sehingga terbentuk \(\triangle ABC \) dan \(\triangle DEF \) dengan panjang \(AB = DE \), \(m \angle A = m \angle D \), dan \(AC = DF \).

2. Guntinglah \(\triangle DEF \) dan tumpukkan di atas \(\triangle ABC \), apakah kedua segitiga tersebut kongruen? Jelaskan.

💡 **Ayo Kita Simpulkan**

Dari kegiatan di atas, kesimpulan apa yang siswa peroleh?

Dua segitiga kongruen jika dan hanya jika dua pasang sisi yang bersesuaian sama panjang dan sudut yang diapit sudut itu sama besar. Dikenal dengan kriteria sisi – sudut – sisi.

Kegiatan 4.8 Menguji Kekongruenan Segitiga dengan Kriteria Sudut – Sisi – Sudut

Menguji Kekongruenan Segitiga dengan Kriteria Sudut – Sisi – Sudut

Sediakan alat sebagai berikut:
1. Selembar kertas
2. Pensil
3. Penggaris
4. Gunting
5. Busur

Lakukan kegiatan berikut ini.
1. Gambarlah $\triangle ABC$ dan $\triangle DEF$ dengan $m\angle A = m\angle D$, $AB = DE$, dan $m\angle B = m\angle E$ pada selembar kertas dengan langkah sebagai berikut: (lihat gambar)
 a) Gambarlah garis k sebarang pada selembar kertas.
 b) Pada garis k, buatlah segmen garis AB dan DE, dengan $AB = DE$.
 c) Buatlah garis r melalui titik A dan buatlah garis s melalui titik D, sedemikian hingga garis r sejajar dengan s. Apakah $m\angle A = m\angle D$? Jelaskan.
 d) Buatlah garis p melalui titik B dan buatlah garis q melalui titik E, sedemikian hingga garis p sejajar dengan q. Apakah $m\angle B = m\angle E$? Jelaskan.
 e) Titik perpotongan garis r dan p beri nama titik C, perpotongan garis s dan q beri nama titik F, sehingga terbentuk $\triangle ABC$ dan $\triangle DEF$ dengan $m\angle A = m\angle D$, $AB = DE$, dan $m\angle B = m\angle E$.

2. Guntinglah $\triangle DEF$ dan tumpukkan di atas $\triangle ABC$, apakah kedua segitiga tersebut kongruen? Jelaskan.

Ayo Kita Simpulkan

Dari kegiatan di atas, kesimpulan apa yang siswa peroleh?

Dua segitiga kongruen jika dan hanya jika ...

Kegiatan 4.9 Menguji Kekongruenan Segitiga dengan Kriteria Sisi – Sudut – Sudut

Kegiatan 4.9 Menguji Kekongruenan Segitiga dengan Kriteria Sisi – Sudut – Sudut

Sediakan alat sebagai berikut:
1. Selembar kertas
2. Penggaris
3. Gunting
4. Busur

Lakukan kegiatan berikut ini.
1. Gambarlah \(\Delta ABC\) dan \(\Delta DEF\) dengan \(m \angle A = m \angle D, m \angle C = m \angle F\), dan \(AB = DE\) pada selembar kertas dengan langkah sebagai berikut: (lihat gambar)
 a) Gambarlah garis \(k\) sebarang pada selembar kertas.
 b) Buatlah garis \(r\) yang memotong garis \(k\) di titik \(A\).
 c) Buatlah garis \(s\) yang memotong garis \(k\) di titik \(D\) dan sejajar dengan garis \(r\).
d) Pada garis r, buatlah segmen garis AB.
 Pada garis s, buatlah segmen garis DE dengan $DE = AB$.

e) Dari titik B buatlah garis p yang memotong garis k. Perpotongan antara garis p dan garis k beri nama titik C.

f) Dari titik E buatlah garis q yang memotong garis k di titik F dan sejajar dengan garis p. Perpotongan antara garis q dan garis k beri nama titik F.

g) Apakah pasti $\angle A = \angle D$ dan $\angle C = \angle F$? Jelaskan.

h) Terbentuk $\triangle ABC$ dan $\triangle DEF$ dengan $AB = DE$, $\angle A = \angle D$, dan $\angle C = \angle F$. (kriteria sisi – sudut – sudut)

Ayo Kita Simpulkan

Dari kegiatan di atas, kesimpulan apa yang siswa peroleh?

Dua segitiga kongruen jika dan hanya jika dua pasang sudut yang bersesuaian sama besar dan sepasang sisi yang bersesuaian sama panjang. Dikenal dengan kriteria sudut – sudut – sisi.

Ayo Kita Menalar

Apakah dua segitiga yang mempunyai tiga pasang sudut-sudut yang bersesuaian sama besar pasti kongruen? Jelaskan dengan alasan yang mendukung jawabanmu.

Belum tentu, tiga pasang sudut yang bersesuaian sama besar belum menjamin dua segitiga tersebut kongruen. Contohnya dua segitiga samasisi.
sudut-sudut yang bersesuaian sama besar yaitu 60°, tetapi panjang sisi yang bersesuaian tidak selalu sama panjang (contohnya seperti gambar di atas).

Ayo Kita Gali Informasi

Dengan Kegiatan 4.6 sampai dengan 4.9, siswa sudah menemukan syarat-syarat (kriteria) dua segitiga kongruen. Coba carilah kriteria lain untuk menguji dua segitiga kongruen.

Ada satu lagi kriteria yang menjamin dua segitiga kongruen yaitu, khusus untuk segitiga siku-siku, jika sisi miring dan satu sisi siku yang bersesuaian sama panjang.

Materi Esensi

Syarat Dua Segitiga Kongruen

Materi inti pada Sub Bab 4.B adalah syarat dua segitiga kongruen.

Guru sebisa mungkin tidak langsung mengajarkan/mendoktrin siswa dengan materi pembelajaran ini. Tetapi guru mengarahkan atau memfasilitasi siswa untuk menemukan sendiri konsep mengenai syarat dua segitiga kongruen dengan Kegiatan 4.6 sampai dengan Kegiatan 4.9 dalam Sub bab ini. Dengan kegiatan-kegiatan tersebut siswa dituntun untuk mendapatkan pemahamaman mengenai konsep syarat dua segitiga kongruen.
Materi Esensi

Syarat Dua Segitiga Kongruen

Dua bangun yang mempunyai bentuk dan ukuran yang sama dinamakan kongruen. Dua segitiga dikatakan kongruen jika hanya jika memenuhi syarat berikut ini:

(i) sisi-sisi yang bersesuaian sama panjang
(ii) sudut-sudut yang bersesuaian sama besar.

\[\angle B \text{ dan } \angle E \text{ adalah sudut yang bersesuaian} \]

\[AB \text{ dan } DE \rightarrow AB = DE \]
\[BC \text{ dan } EF \rightarrow BC = EF \]
\[CA \text{ dan } FD \rightarrow CA = FD \]

aturn dengan kata lain

\[\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = 1 \]

Jika \(\triangle ABC \) dan \(\triangle DEF \) memenuhi syarat tersebut, maka \(\triangle ABC \) dan \(\triangle DEF \) kongruen, dinotasikan dengan \(\triangle ABC \cong \triangle DEF \).

Jika \(\triangle ABC \) dan \(\triangle DEF \) tidak memenuhi syarat tersebut maka maka \(\triangle ABC \) dan \(\triangle DEF \) tidak kongruen, dinotasikan dengan \(\triangle ABC \not\cong \triangle DEF \).

Catatan:

Ketika menyatakan dua segitiga kongruen sebaiknya berdasarkan titik-titik sudut yang bersesuaian dan berurutan, contohnya:

\[\triangle ABC \sim \triangle DEF \] atau \[\triangle BAC \sim \triangle EDF \] atau \[\triangle CBA \sim \triangle FED \]

bukan \(\triangle ABC \cong \triangle EDF \) atau \(\triangle ABC \cong \triangle EFD \) atau yang lainnya.
Untuk menguji apakah dua segitiga kongruen atau tidak, tidak perlu menguji semua pasangan sisi dan sudut yang bersesuaian. Dua segitiga dikatakan kongruen jika memenuhi salah satu kondisi berikut ini:

2. Dua pasang sisi yang bersesuaian sama panjang dan sudut yang diapitnya sama besar. Biasa disebut dengan kriteria \(sisi – sudut – sisi \).

3. Biasa disebut dengan kriteria \(sudut – sisi – sudut \).

4. Dua pasang sudut yang bersesuaian sama besar dan sepasang sisi yang bersesuaian sama panjang. Biasa disebut dengan kriteria \(sudut – sudut – sisi \).

Contoh 4.4

Membuktikan Dua Segitiga Kongruen

Contoh 4.4 Membuktikan Dua Segitiga Kongruen

a. Perhatikan gambar di samping.
Buktikan bahwa $\triangle ABC \cong \triangle EDC$.

Alternatif Penyelesaian:
Berdasarkan gambar di atas diperoleh bahwa:

- Panjang $AC = EC$ (diketahui ada tanda sama panjang)
- $m\angle ACB = m\angle ECD$ (karena saling bertolak belakang)
- Panjang $BC = DC$ (diketahui ada tanda sama panjang)
- Jadi, $\triangle ABC \cong \triangle EDC$ (berdasarkan kriteria sisi – sudut – sisi).

b. Perhatikan gambar di samping.
Buktikan bahwa $\triangle PQS \cong \triangle RQS$.

Alternatif Penyelesaian:
Berdasarkan gambar di samping diperoleh bahwa:

- Panjang $PQ = RQ$ (diketahui ada tanda sama panjang)
- Panjang $PS = RS$ (diketahui ada tanda sama panjang)
- Panjang QS pada $\triangle PQS$ sama dengan panjang QS pada $\triangle RQS$ (QS berimpit)
- Jadi, $\triangle PQS \cong \triangle RQS$ (berdasarkan kriteria sisi – sisi – sisi).

Ayo Kita Tinjau Ulang

Jelaskan dengan alasan yang mendukung jawabannya.

1. Apakah dua segitiga yang mempunyai tiga pasang sisi-sisi yang bersesuaian sama panjang pasti kongruen?
2. Apakah dua segitiga yang mempunyai tiga pasang sudut-sudut yang bersesuaian sama besar pasti kongruen?
3. Apakah dua segitiga yang mempunyai dua pasang sisi yang bersesuaian sama panjang dan sepasang sudut yang bersesuaian sama besar pasti kongruen?
4. Apakah dua segitiga yang mempunyai dua pasang sudut yang bersesuaian sama besar dan sepasang sisi yang bersesuaian sama panjang pasti kongruen?
Kekongruenan Dua Segitiga

Latihan 4.2

Selesaikan soal-soal berikut ini dengan benar dan sistematis.

1. Perhatikan gambar di bawah ini.

Buktikan bahwa $\triangle PQS$ dan $\triangle RQS$ kongruen.

Penyelesaian:

\[
PQ = RQ \quad \text{(diketahui pada gambar)}
\]

\[
QS \quad \text{(pada} \quad \triangle PQS) = QS \quad \text{(pada} \quad \triangle RQS) \quad \text{(berhimpit)}
\]

\[
PS = RS \quad \text{(diketahui pada gambar)}
\]

Jadi, $\triangle PQS$ dan $\triangle RQS$ kongruen berdasarkan kriteria sisi – sisi – sisi.

2. Perhatikan gambar di bawah ini.

Panjang $AB = DE$ dan $AB \parallel DE$.

Buktikan bahwa $\triangle ABC$ dan $\triangle EDC$ kongruen.

Petunjuk:

Pilih beberapa soal dari Latihan 4.2 sebagai sampel untuk dikerjakan siswa di depan kelas dan beri umpan balik bersama siswa. Instruksikan siswa untuk mengerjakan soal lainnya dari Latihan 4.2 sebagai postes. Kemudian dikoreksi bersama siswa sehingga siswa dapat mengetahui dan memahami jawaban yang benar dari Latihan 4.2 ini. Hasil nilai dari latihan soal ini dapat diambil sebagai penilaian aspek pengetahuan untuk Kompetensi Dasar seperti yang tertera pada sampul bab ini. Sedangkan penilaian aspek sikap dan keterampilannya dapat diambil melalui pengamatan (penilaian guru, teman sejawat atau diri sendiri) pada saat siswa bersama kelompoknya melakukan kegiatan-kegiatan dalam Sub bab 4.
3. Titik C adalah titik pusat lingkaran. Tunjukkan bahwa dua segitiga pada gambar di samping adalah kongruen.

Penyelesaian:

$CA = CB$ = jari-jari lingkaran

$m \angle ACB = m \angle ECD$ (bertolak belakang)

$CD = CE =$ jari-jari lingkaran

Jadi, $\triangle ACB$ dan $\triangle ECD$ kongruen berdasarkan kriteria sisi - sudut - sisi.

 a. Buktikan bahwa $\triangle WXZ \cong \triangle ZYX$.
 b. Tunjukkan bahwa $WXYZ$ adalah jajargenjang.

Petunjuk:
 b. Gunakan kekongruenan $\triangle WXZ$ dan $\triangle ZYX$
 karena $\triangle WXZ \cong \triangle ZYX$ (berdasarkan kriteria sisi - sisi - sisi)
 berarti $m \angle WXZ = m \angle YZX$
 $m \angle WZX = m \angle YXZ$
 $m \angle XWZ = m \angle ZYX$ (ii)
 Pada gambar diketahui $WX = YZ$ dan $WZ = YX$ (iii)
 Berdasarkan (i), (ii), dan (iii) berarti $WXYZ$ adalah jajargenjang.

5. Perhatikan gambar di bawah ini.

 Titik O adalah pusat lingkaran dalam dan lingkaran luar. AB adalah garis singgung dan titik P adalah titik singgung pada lingkaran kecil.

 Dengan menggunakan kekongruenan segitiga, tunjukkan bahwa titik P adalah titik tengah AB.
Penyelesaian:
\(\triangle AOB \) adalah segitiga samakaki dengan \(OA = OB \) (jari-jari lingkaran)
sehingga \(m \angle OAB = m \angle OBA \) atau \(m \angle OAP = m \angle OBP \).
P adalah titik singgung pada lingkaran kecil, maka \(OP \) tegak lurus dengan \(AB \).
Lihat \(\triangle OAP \) dan \(\triangle OBP \)
\(\triangle OAP = \triangle OBP \) dan \(\angle OPA = \angle OPB = 90^\circ \), maka \(\angle AOP = \angle BOP \).
Berarti berdasarkan kriteria sisi - sudut - sudut
yaitu: \(OA = OB \), \(\angle OPA = \angle OPB = 90^\circ \) dan \(\angle AOP = \angle BOP \)
maka \(\triangle OAP \) dan \(\triangle OBP \) kongruen.
Akibatnya, \(AP = BP \) (titik \(P \) adalah titik tengah \(AB \))

6. Perhatikan gambar di bawah ini.

Petunjuk:
Gunakan kriteria kekongruenan segitiga siku-siku.
\(BM = CN \) (diketahui)
\(BC = BC \) (berhimpit)
\(m \angle BMC = m \angle CNB = 90^\circ \) (diketahui)
Jadi, \(\triangle BCM \cong \triangle CBN \)

7. Perhatikan gambar di bawah ini.

Petunjuk:
Buktikan dengan kriteria sisi - sudut - sudut.
8. Menalar

Penyelesaian:
ada 3 pasang segitiga kongruen yaitu:

$\triangle POS \cong \triangle QOR$, $\triangle PSR \cong \triangle QRS$, dan $\triangle PSQ \cong \triangle QRP$.

9. Berpikir Kritis

Apakah dua segitiga yang mempunyai tiga pasang sudut-sudut yang bersesuaian sama besar pasti kongruen? Jelaskan dengan alasan yang mendukung jawabannya.

Penyelesaian:
Belum tentu, tiga pasang sudut yang bersesuaian sama besar belum menjamin dua segitiga tersebut kongruen.

Contohnya dua segitiga samasisi.

Sudut-sudut yang bersesuaian sama besar, yaitu 60°, tetapi panjang sisi yang bersesuaian tidak selalu sama panjang.

10. Berpikir Kritis

Apakah dua segitiga yang mempunyai dua pasang sisi yang bersesuaian sama panjang dan sepasang sudut yang bersesuaian sama besar pasti kongruen? Jelaskan dengan alasan yang mendukung jawabannya.

Penyelesaian:
Belum tentu, dua segitiga yang mempunyai dua pasang sisi yang bersesuaian sama panjang dan sepasang sudut yang bersesuaian sama besar belum menjamin dua segitiga tersebut kongruen. kecuali dua sisi yang bersesuaian sama panjang yang mengapit satu sudut yang diketahui sama besar (kriteria sisi – sudut – sisi).
Contohnya \(\triangle ABD\) dan \(\triangle CBD\) di samping. (Silakan digambar sendiri)

\[AB = CB \]

\(BD\) (pada \(\triangle ABD\)) = \(BD\) (pada \(\triangle CBD\))

\[m\angle ADB = m\angle CDB \] (berhimpit)

Tetapi panjang \(AD \neq CD\).

Dengan kata lain meskipun mempunyai dua pasang sisi yang bersesuaian sama panjang dan sepasang sudut yang bersesuaian sama besar tidak menjamin bahwa \(\triangle ABD\) tidak sebangun dengan \(\triangle CBD\).

11. **Membagi Sudut**

Gambarlah sebuah sudut dan beri nama \(\angle ABC\), kemudian

a. Dengan menggunakan jangka, bagilah \(\angle ABC\) tersebut menjadi dua sama besar.

Penyelesaian:

Gunakan teknik membagi sudut menjadi dua bagian dengan jangka seperti langkah di bawah ini: (perhatikan gambar)

1. Buat busur lingkaran dengan pusat titik \(B\), sehingga memotong kaki sudut \(AB\) di titik \(D\) dan memotong kaki sudut \(BC\) di titik \(E\).

2. Buat lagi 2 buah busur lingkaran masing-masing dengan pusat di titik \(D\) dan \(E\). Perpotongan kedua busur lingkaran tersebut beri nama titik \(G\).

3. Tarik garis dari titik \(B\) ke \(G\), sehingga \(m\angle ABG = \angle CBG\).
b. Gambarlah lagi $\angle ABC$ yang sama, kemudian tanpa menggunakan jangka maupun busur derajat, bagilah $\angle ABC$ tersebut menjadi dua sama besar.

(petunjuk: gunakan konsep segitiga kongruen)

Penyelesaian:

1. Gambarlah garis AD yang sejajar dengan BC.

2. Gambarlah garis CD yang sejajar dengan BA. Sehingga terbentuk bangun jajargenjang $ABCD$.

3. Tarik garis dari titik B ke D (diagonal jajargenjang $ABCD$). Jelas bahwa $\Delta ABD \cong \Delta CBD$ dengan $m\angle ABD = \angle CBD$.

12. **Mengukur Panjang Danau**

Chan ingin mengukur panjang sebuah danau tetapi tidak memungkinkan mengukurnya secara langsung. Dia merencanakan suatu cara yaitu ia memilih titik P, Q, R dan mengukur jarak QP dan RP (lihat ilustrasi gambar). Kemudian memperpanjang QP menuju ke Q' dan RP menuju ke R' sehingga panjang $QP = PQ'$ dan $RP = PR'$.

Chan menyimpulkan bahwa dengan mengukur panjang $Q'R'$ dia mendapatkan panjang danau tersebut. Apakah menurutmu strategi Chan benar? Jelaskan.

Penyelesaian:

Strategi Chan benar. Dia menggunakan konsep dua segitiga kongruen.

ΔPQR dijamin sebangun dengan $\Delta PQ'R'$ karena memenuhi kriteria kekongruenan dua segitiga sisi – sudut – sisi, yaitu:

- $PQ = PQ'$ (diketahui)
- $m\angle QPR = m\angle Q'PR'$ (bertolak belakang)
- $PR = PR'$ (diketahui).

Sehingga, panjang danau $QR = Q'R'$.
C. Kesebangunan Bangun Datar

Pertanyaan Penting

Setelah mempelajari Sub Bab 4 ini diharapkan siswa dapat menjawab pertanyaan penting di bawah ini.

Bagaimana siswa dapat mengidentifikasi dua bangun atau lebih sebangun?

Bagaimana siswa dapat menggunakan perbandingan \((proportion) \) untuk membantumu dalam desain grafis, fotografi atau membuat layout majalah?

Ketika siswa mengedit foto dalam komputer, siswa mengeklik dan menggeser \((drag) \) foto pada sisi foto (ke atas, ke bawah, atau ke samping,) maka ukurannya terhadap foto asli menjadi tidak proporsional. Tetapi jika siswa mengeklik dan menggeser \((drag) \) foto pada sisi sudut foto maka ukuran foto proporsional terhadap foto aslinya.

Foto asli

\(\text{di } drag \text{ ke atas} \)

\(\text{di } drag \text{ ke samping} \)

\(\text{di } drag \text{ pada sudut foto} \)

\(\text{Gambar 4.10} \)

\(\text{Sumber: Dokumen Kemdikbud} \)

Kegiatan 4.10 Kesebangunan Bangun Datar

Sebelum melakukan Kegiatan 4.10 (pertemuan sebelumnya) siswa diminta membawa pas foto \(2 \times 3 \), \(3 \times 4 \) dan \(4 \times 6 \). Kegiatan ini dilakukan secara berkelompok. Kegiatan 4.10 ini bertujuan agar siswa dapat menemukan konsep kesebangunan dua bangun datar. Guru melakukan pendampingan dan pengamatan selama kegiatan berlangsung.
Kegiatan 4.10 Kesebangunan Bangun Datar

Alat dan bahan yang diperlukan:
1. Pas foto ukuran 2 × 3, 3 × 4, dan 4 × 6
2. Penggaris
3. Busur derajat
4. Pensil

Lakukan kegiatan di bawah bersama temanmu.
1. Siapkan pas fotomu ukuran 2 × 3, 3 × 4, dan 4 × 6 masing-masing 1 lembar

2. Ukurlah kembali foto-foto itu dengan penggaris untuk memastikan bahwa ukurannya sesuai.
3. Selidikilah manakah menurut kalian di antara foto-foto tersebut yang sebangun, manakah yang tidak sebangun.
4. Menurutmu, bagaimana cara menentukan dua bangun sebangun atau tidak?

Kegiatan 4.11 Masalah Nyata Sederhana: Optical Zoom

Siswa diminta berdiskusi dan menyelesaikan masalah nyata yang berkaitan dengan kesebangunan bangun datar dalam Kegiatan 4.11 ini bersama kelompoknya.
Coba selesaikan masalah berikut ini bersama temanmu.

Optical zoom atau perbesaran optik sering dijumpai pada kamera. Fasilitas optical zoom pada kamera adalah berfungsi untuk memperbesar tampilan gambar. Jika gambar diperbesar dua kali disebut $2 \times$ zoom. Kata optical berarti menggunakan lensa kamera bukan menggunakan sistem digital. Misalkan telepon genggam Ayah memiliki $2 \times$ optical zoom sedangkan telepon genggam Ibu memiliki $4 \times$ optical zoom, berapa ukuran gambar bunga krisan di samping jika ukuran gambar awalnya adalah $1,6 \times 1,4$ cm. Berapa pula ukuran gambar orang main ski disamping jika ukuran gambar awalnya adalah $1,9 \times 1,2$ cm

a. pada kamera telepon genggam ayah.
b. pada kamera telepon genggam ibu.

Coba carilah informasi melalui buku, majalah, internet dan lain-lain mengenai peralatan atau teknologi yang prinsip kerjanya menggunakan konsep kesebangunan.

Buatlah presentasi mengenai informasi yang telah siswa peroleh di atas dan paparkan kepada temanmu di kelas.

Alat yang diperlukan:
- Pensil
- Penggaris
- Busur derajat

Kerjakanlah kegiatan di bawah ini bersama temanmu.

Perhatikan gambar di bawah ini.

1. Ukurlah panjang sisi dan besar sudut bangun pada gambar di atas.
2. Lengkapilah tabel di bawah ini.

<table>
<thead>
<tr>
<th>Panjang Sisi (dalam satuan cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AB = ...$</td>
</tr>
<tr>
<td>$EF = ...$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Besar Sudut</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m\angle A = ...^\circ$</td>
</tr>
<tr>
<td>$m\angle E = ...^\circ$</td>
</tr>
</tbody>
</table>

3. Tuliskan pasangan sisi-sisi yang bersesuaian.
Bagaimana perbandingan sisi-sisi yang bersesuaian?

4. Tuliskan pasangan sudut-sudut yang bersesuaian.
Bagaimana besar sudut-sudut yang bersesuaian?
Dari kegiatan di atas, kesimpulan apa yang siswa peroleh?

Dua bangun segibanyak (poligon) sebangun jika memenuhi syarat:
1. perbandingan sisi-sisi yang bersesuaian sama.
2. sudut-sudut yang bersesuaian sama besar.

Materi Esensi

Syarat Dua Segitiga Kongruen

Materi inti pada Sub Bab 4 C adalah kesebangunan bangun datar

Materi Esensi

Kesebangunan Bangun Datar

Dua bangun datar yang mempunyai bentuk yang sama disebut sebangun. Tidak perlu ukurannya sama, tetapi sisi-sisi yang bersesuaian sebanding (proportional) dan sudut-sudut yang bersesuaian sama besar. Perubahan bangun satu menjadi bangun lain yang sebangun melibatkan perbesaran atau pengecilan.

Dengan kata lain dua bangun dibuktikan sebangun jika memenuhi syarat:

(i) perbandingan panjang sisi yang bersesuaian senilai

\[
\frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} = \frac{AD}{EH}
\]

(ii) sudut yang bersesuaian besarnya sama

\[
m\angle A = m\angle E \\
m\angle B = m\angle F \\
m\angle C = m\angle G \\
m\angle D = m\angle H
\]
Jika bangun \(ABC \) dan \(DEF \) memenuhi kedua syarat tersebut, maka bangun \(ABCD \) dan \(EFGH \) sebangun, dinotasikan dengan \(ABCD \sim EFGH \).

Jika bangun \(ABC \) dan \(DEF \) tidak memenuhi kedua syarat tersebut maka bangun \(ABCD \) dan \(EFGH \) tidak sebangun, dinotasikan dengan \(ABCD \not\sim EFGH \).

Catatan:
Ketika menyatakan dua bangun kongruen sebaiknya dinyatakan berdasarkan titik-titik sudut yang bersesuaian dan berurutan, contohnya:

\[
\triangle ABC \cong \triangle EFG \quad \text{atau} \quad \triangle BAC \cong \triangle FEH \quad \text{atau} \quad \triangle CBA \cong \triangle GHF
\]

Contoh 4.5
Menentukan Sisi-sisi dan Sudut-sudut yang Bersesuaian

Menentukan Sisi-sisi dan Sudut-sudut yang Bersesuaian

Perhatikan gambar dua bangun yang sebangun di bawah ini.

Tentukan:

a. Sisi-sisi yang bersesuaian
b. Sudut-sudut yang bersesuaian

Alternatif Penyelesaian:

<table>
<thead>
<tr>
<th>Panjang Sisi-sisi yang bersesuaian:</th>
<th>Besar sudut-sudut yang bersesuaian:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{PQ} \rightarrow \overline{EF}) (\overline{ST} \rightarrow \overline{HI})</td>
<td>(\angle P \rightarrow \angle E) (\angle S \rightarrow \angle H)</td>
</tr>
<tr>
<td>(\overline{QR} \rightarrow \overline{FG}) (\overline{TU} \rightarrow \overline{IJ})</td>
<td>(\angle Q \rightarrow \angle F) (\angle T \rightarrow \angle I)</td>
</tr>
<tr>
<td>(\overline{RS} \rightarrow \overline{GH}) (\overline{UP} \rightarrow \overline{JE})</td>
<td>(\angle R \rightarrow \angle G) (\angle U \rightarrow \angle J)</td>
</tr>
</tbody>
</table>
Contoh 4.6

Mengidentifikasi Dua Bangun Sebangun

Contoh 4.6

Mengidentifikasi Dua Bangun Sebangun

Perhatikan gambar di bawah ini.

Manakah pasangan persegipanjang yang sebangun? Jelaskan.

Alternatif Penyelesaian:

Periksa sudut-sudut yang bersesuaian:

Ketiga gambar tersebut adalah persegipanjang, maka masing-masing sudutnya adalah 90°. Sehingga, sudut-sudut yang bersesuaian pasti sama besar yaitu 90°.

Periksa perbandingan sisi-sisi yang bersesuaian:

- Persegipanjang \((ABCD)\) dan \((EFGH)\)

\[
\frac{AB}{EF} = \frac{DC}{HG} = \frac{12}{8} = \frac{3}{2}
\]

\[
\frac{AD}{EH} = \frac{BC}{FG} = \frac{8}{6} = \frac{4}{3}
\]

Tampak bahwa perbandingan sisi-sisi yang bersesuaian tidak sama.

Jadi, persegipanjang \((ABCD)\) dan \((EFGH)\) tidak sebangun.

- Persegipanjang \((ABCD)\) dan \((IJKL)\)

\[
\frac{AB}{JK} = \frac{DC}{IL} = \frac{12}{4} = \frac{3}{1}
\]

206 Buku Guru Kelas IX SMP/MTs
$$\frac{AD}{JI} = \frac{BC}{KL} = \frac{8}{3}$$

Tampak bahwa perbandingan sisi-sisi yang bersesuaian tidak sama.
Jadi, persegi panjang \((ABCD)\) dan \((IJKL)\) tidak sebangun.

- Persegi panjang \((EFGH)\) dan \((IJKL)\)

\[
\frac{EF}{JK} = \frac{HG}{IL} = \frac{8}{4} = \frac{2}{1} \\
\frac{EH}{JI} = \frac{FG}{KL} = \frac{6}{3} = \frac{2}{1}
\]

Tampak bahwa perbandingan sisi-sisi yang bersesuaian senilai.
Jadi, persegi panjang \((EFGH)\) dan \((IJKL)\) sebangun.

Ingat: Persegi panjang \(EFGH\) sebangun dengan Persegi panjang \(JKLI\), tetapi Persegi panjang \(EFGH\) tidak sebangun dengan Persegi panjang \(IJKL\) (penamaan dua bangun kongruen disesuaikan dengan titik sudut-sudut yang bersesuaian).

Jadi, pasangan persegi panjang yang sebangun adalah persegi panjang \((EFGH)\) dan \((IJKL)\) sebangun.

Contoh 4.7

Menentukan Panjang Sisi dan Besar Sudut yang Belum Diketahui Dari Dua Bangun Datar Sebangun

Contoh 4.7

Menentukan Panjang Sisi dan Besar Sudut yang Belum Diketahui Dari Dua Bangun Datar Sebangun

Perhatikan di bawah ini.
Bangun $ABCD$ dan $EFGH$ sebangun.

Tentukan:

a. nilai x, y dan z

b. panjang sisi EF, BC, dan HG

c. perbandingan luas $EFGH$ dan $ABCD$

Alternatif Penyelesaian:

Bangun $ABCD$ dan $EFGH$ sebangun berarti sudut-sudut yang bersesuaian sama besar dan perbandingan sisi-sisi yang bersesuaian senilai, yaitu:

\[
\frac{EF}{AB} = \frac{FG}{BC} = \frac{GH}{CD} = \frac{HE}{DA}
\]

a. Bangun $ABCD$ dan $EFGH$ sebangun dengan sudut-sudut yang bersesuaian

$m \angle E = m \angle A$, $m \angle F = m \angle B$, $m \angle G = m \angle C$, dan $m \angle H = m \angle D$,

Sehingga,

\[
m \angle G = m \angle C \iff x^\circ = 22,6^\circ
\]

\[
m \angle D = 180^\circ - m \angle C \iff y^\circ = 180^\circ - x^\circ = 180^\circ - 22,6^\circ = 157,4^\circ \quad \text{(Mengapa?)}
\]

\[
m \angle H = m \angle D \iff z^\circ = y^\circ = 157,4^\circ
\]

Jadi nilai adalah $x^\circ = 22,6^\circ$, $y^\circ = 157,4^\circ$ dan $z^\circ = 157,4^\circ$

b. Perbandingan sisi yang bersesuaian adalah

\[
\frac{EF}{AB} = \frac{FG}{BC} = \frac{GH}{CD} = \frac{HE}{DA}
\]

pada gambar diketahui bahwa

\[
\frac{HE}{DA} = \frac{15}{20} = \frac{3}{4}
\]

Sehingga,

\[
\frac{EF}{AB} = \frac{HE}{DA} = \frac{3}{4}
\]

\[
\frac{EF}{DA} = \frac{3}{4}
\]

\[
\frac{EF}{16} = \frac{3}{4}
\]

\[
EF = \frac{16 \times 3}{4} = 12
\]
Selanjutnya, menghitung panjang BC sebagai berikut:

\[
\frac{FG}{BC} = \frac{3}{4} \\
\frac{20}{BC} = \frac{3}{4} \\
BC = \frac{20 \times 4}{3} = 26 \frac{2}{3}
\]

Untuk mencari panjang HG, buat garis bantuan HO seperti pada gambar di samping. Sehingga,

\[
FO = EH = 15 \text{ cm}, \quad HO = EF = 12 \text{ cm}, \quad OG = FG – FO = 20 – 15 = 5 \text{ cm}
\]

Gunakan teorema Phytagoras untuk menghitung panjang HG (lihat segitiga HOG)

\[
HG = \sqrt{HO^2 + OG^2} = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13
\]

Jadi, panjang $EF = 12 \text{ cm}$, $BC = 26 \frac{2}{3} \text{ cm}$, dan $HG = 13 \text{ cm}$.

Luas $EFGH = \frac{1}{2} (EH + FG) \times EF$

\[
= \frac{1}{2} (15 + 20) \times 12.3 \\
= \frac{35 \times 3}{140} \times 4 \\
= \frac{35 \times 3}{140} \times \frac{3}{140.4} \\
= \frac{9}{16}
\]

Luas $ABCD = \frac{1}{2} (AD + BC) \times AB$

\[
= \frac{35 \times 3}{140} \times 4 \\
= \frac{35 \times 3}{140} \times \frac{3}{140.4} \\
= \frac{9}{16}
\]
Jadi, perbandingan luas $EFGH$ dan $ABCD$ adalah 9 : 16.

Ayo Kita Tinjau Ulang

Pada Contoh 4.7 di atas, perbandingan luas $EFGH$ dan $ABCD$ adalah 9 : 16. Apakah kaitannya dengan perbandingan sisi yang bersesuaian bangun $EFGH$ dan $ABCD$ yaitu

$$
\frac{EF}{AB} = \frac{FG}{BC} = \frac{GH}{CD} = \frac{HE}{DA} = \frac{3}{4}
$$

Apakah pada dua bangun yang sebangun jika perbandingan panjang sisi yang bersesuaian adalah $x : y$ maka apakah pasti perbandingan luasnya adalah $x^2 : y^2$? Berikan penjelasan.

Bagaimana jika pada dua bangun ruang yang sebangun apakah jika perbandingan ukuran yang bersesuaian adalah adalah $x : y$ maka apakah pasti perbandingan volumenya adalah $x^3 : y^3$? Berikan penjelasan.

Latihan 4.3 Kesebangunan Bangun Datar

Pilih beberapa soal dari Latihan 4 C sebagai sampel untuk dikerjakan siswa di depan kelas dan beri umpan balik bersama siswa. Instruksikan siswa untuk mengerjakan soal lainnya dari Latihan 4 C sebagai postes. Kemudian dikoreksi bersama siswa sehingga siswa dapat mengetahui dan memahami jawaban yang benar dari Latihan 4 C ini. Hasil nilai dari latihan soal ini dapat diambil sebagai penilaian aspek pengetahuan untuk Kompetensi Dasar seperti yang tertera pada sampul bab ini.

Sedangkan penilaian aspek sikap dan keterampilannya dapat diambil melalui pengamatan (penilaian guru, teman sejawat atau diri sendiri) pada saat siswa bersama kelompoknya melakukan kegiatan-kegiatan dalam Sub bab 4 C.

Latihan 4.3 Kesebangunan Bangun Datar

Selesaikan soal-soal di bawah ini dengan benar dan sistematis.

$$
\begin{array}{c}
S \quad 16 \text{ cm} \\
\text{P} \quad 4 \text{ cm} \\
\text{O} \\
\hline
\end{array}
\quad
\begin{array}{c}
D \quad 2 \text{ cm} \\
\text{A} \quad 8 \text{ cm} \\
\text{B} \\
\hline
\end{array}
$$
Petunjuk:
Trapezium $PQRS$ sebangun dengan $DCBA$ jika perbandingan sisi-sisi yang bersesuaian senilai dan sudut-sudut yang bersesuaian sama besar.

Ukurlah panjang sisi-sisi dan besar sudut-sudut kedua bangun tersebut.

Selidikilah apakah
\[\frac{PQ}{DC} = \frac{QR}{CB} = \frac{RS}{BA} = \frac{SP}{AD} \]
apakah $m\angle P = m\angle D$, $m\angle Q = m\angle C$, $m\angle R = m\angle B$, dan $m\angle S = m\angle A$?

Jika ya, maka kedua trapesium tersebut sebangun. Jika salah satu tidak terpenuhi maka kedua trapesium di atas tidak sebangun.

2. Carilah pasangan bangun yang sebangun diantara gambar di bawah ini.

![Gambar pasangan bangun yang sebangun](image1)

Penyelesaian: $A \sim B$, $C \sim G$, dan $E \sim F$.

3. Perhatikan dua bangun yang sebangun pada gambar di bawah ini.

![Gambar dua bangun yang sebangun](image2)
Hitunglah panjang sisi AE, ED, dan QR.

Penyelesaian:

$AE = 24$ cm, $ED = 28$ cm, dan $QR = 36$ cm.

Petunjuk: gunakan perbandingan sisi-sisi yang bersesuaian.

4. Dua buah bangun di bawah ini sebangun

$$
\begin{align*}
E & \quad 16 \text{ cm} \\
F & \quad 28 \text{ cm} \\
G & \quad x^\circ \\
H & \quad 127^\circ
\end{align*}
$$

$$
\begin{align*}
D & \quad y^\circ \\
A & \quad 20 \text{ cm} \\
B & \quad z^\circ \\
C & \quad 35 \text{ cm}
\end{align*}
$$

Hitunglah:

a. Panjang EF, HG, AD, dan DC.

b. Nilai x, y dan z.

Penyelesaian:

$EF = 16$ cm, $HG = 20$ cm, $AD = 20$ cm, dan $DC = 25$ cm.

$x = 180^\circ - m\angle H = 180^\circ - 127^\circ = 53^\circ$

$y = m\angle H = 127^\circ$ dan $z = x = 53^\circ$

5. Sebuah gambar berbentuk persegi panjang berukuran 16.8 cm \times 8.4 cm. Gambar tersebut diperkecil sehingga ukurannya menjadi k cm \times 2 cm. Hitunglah panjang k.

Penyelesaian: $k = 4$

6. Sebuah foto diletakkan pada selembar karton yang berukuran 50 cm \times 40 cm, sebelum dipasang di pigura. Di bagian sisi kiri, kanan, atas, dan bawah foto diberi jarak seperti nampak pada gambar. Jika foto dan karton tersebut sebangun,
Penyelesaian:

a. Lebar dan tinggi miniatur batako.

b. Perbandingan volume batako asli dan batako miniatur.

c. Berat miniatur batako (dalam gram).

7. Sebuah batako berukuran panjang 24 cm, lebar 12 cm, dan tingginya 8 cm dengan berat 1,6 kg. Terdapat miniatur batako yang sebangun dengan batako tersebut dan terbuat dari bahan yang sama dengan batako asli dan panjangnya 6 cm. Hitunglah:

a. Lebar dan tinggi miniatur batako.

b. Perbandingan volume batako asli dan batako miniatur.

c. Berat miniatur batako (dalam gram).

Petunjuk:

Volume I : Volume II = (panjang sisi I : panjang sisi II)³

Berat I : Berat II = (panjang sisi I : panjang sisi II)³

Penyelesaian:

a. lebar miniatur batako = 3 cm, tebal miniatur batako = 2 cm.

b. perbandingan volume batako asli dan batako miniatur = 64 : 1

c. berat miniatur batako = 25 gram

8. Panjang sisi terpendek dari dua buah segi enam (hexagon) sebangun adalah 10 cm dan 8 cm. Jika luas segi enam yang besar adalah 200 cm², berapakah luas segi enam yang kecil?
Petunjuk:
Luas I : Luas II = (panjang sisi I : panjang sisi II)²

Penyelesaian:
Luas segienam kecil = 128 cm²

9. Usaha Konveksi
Wina mempunyai usaha konveksi. Untuk mengetahui bahan kain yang dibutuhkan, sebelum memproduksi dalam jumlah besar ia membuat sampel baju ukuran kecil dengan skala ¼ terhadap ukuran sebenarnya. Ternyata satu sampel tersebut membutuhkan kain sekitar 0,25 m². Berapa luas kain yang dibutuhkan jika ia mendapat pesanan untuk memproduksi baju tersebut sebanyak 1.000 baju?

Penyelesaian:
Luas kain yang dibutuhkan untuk memproduksi 1.000 baju adalah 4.000 m².

10. Botol Air Mineral

Penyelesaian:
Volume botol kecil 450 ml.

11. Denah Rumah
Perhatikan gambar denah rumah di bawah ini. Denah di samping menggunakan skala 1 : 200. Hitunglah:
 a. Ukuran dan luas garasi sebenarnya
 b. Ukuran dan luas kamar mandi sebenarnya
 c. Luas taman depan sebenarnya
 d. Luas rumah sebenarnya
 (tanah dan bangunan)
Penyelesaian:

a. ukuran garasi = 6 m × 9 m. Luas = 54 m².
b. ukuran dan luas kamar mandi = 3,5 m × 3 m. Luas = 10,5 m².
c. Luas taman depan = 81 m².
d. Luas tanah dan bangunan = 24 m × 18 m = 432 m².

12. Miniatur Kereta Api

Sebuah miniatur salah satu gerbong kereta api dibuat dengan material yang sama dengan kereta api sebenarnya. Panjang miniatur kereta api tersebut adalah 40 cm, panjang sebenarnya adalah 10 m, dan berat miniatur adalah 4 kg. Berapakah berat kereta api sebenarnya?

Penyelesaian:

Berat kereta api sebenarnya adalah 2,5 ton.

D. Kesebangunan Dua Segitiga

Setelah mempelajari Sub Bab 4 D ini diharapkan siswa dapat menjawab pertanyaan penting di bawah ini. Guru memerikan motivasi agar siswa tertarik mempelajari Sub bab ini dengan contoh-contoh manfaat konsep kesebangunan segitiga dalam kehidupan sehari-hari.

Tahukah siswa, pada saat teknologi mesin fotokopi, kamera dan komputer belum ditemukan bagaimana cara manusia menduplikat, memperbesar atau memperkecil suatu gambar?

Bagaimana mengidentifikasi dua segitiga atau lebih sebangun? Bagaimana syarat yang harus dipenuhi sehingga dua segitiga atau lebih dikatakan sebangun?

Bagaimana pula cara mengukur tinggi bangunan atau pohon yang tinggi tanpa mengukurnya secara langsung?
Kegiatan 4.13 Pantograf

Kegiatan 4.13 Pantograf

Ada salah satu alat gambar yang diciptakan oleh Christooph Scheiner sekitar tahun 1630 yang digunakan untuk membuat salinan gambar dengan skala yaitu pantograf. Prinsip kerja pantograf menggunakan konsep kesebangunan.

Ayo Kita Amati

Amatilah gambar pantograf di bawah ini.

Saat pensil pada gambar asli digerakkan, pensil pada sisi kanan secara otomatis akan membuat salinannya. Ukuran salinan gambar dapat disesuaikan dengan mengubah posisi sumbu.

Dengan mengamati dan memahami cara kerja pantograf, siswa bisa membuat pantograf sendiri dan membuat salinan gambar dengan skala tertentu.

Berdasarkan gambar di atas, sumbu-sumbu pada gambar pantograf tersebut dapat diwakili oleh gambar di bawah ini:

Menurut siswa apakah $\triangle ABC$ dan $\triangle AFD$ sebangun? Untuk menjawabnya cobalah siswa selidiki besar sudut-sudut dan perbandingan sisi-sisi yang bersesuaian.
Untuk menyelidiki besar sudut-sudutnya gunakan sifat-sifat garis sejajar yang dipotong oleh suatu garis.
Perhatikan \(\triangle ABC \) dan \(\triangle AFD \).

\[
m\angle BAC = m\angle FAD \quad \text{(karena kedua sudut berhimpit)}
\]

\[
m\angle ABC = m\angle AFD \quad \text{(karena sehadap)}
\]

\[
m\angle BCA = m\angle FDA \quad \text{(karena sehadap)}
\]

Apakah sudut-sudut yang bersesuaian sama besar? Ya.

Misalkan dibuat rancangan pantograf berukuran panjang \(AF = 10 \text{ cm}, FB = 30 \text{ cm}, EC = 30 \text{ cm}, BE = 10 \text{ cm}, AD = 14 \text{ cm}, \) dan \(DC = 42 \text{ cm} \).

Berapa panjang \(DE \) dan \(FD \)?

Berapa skala perbesaran pada pantograf tersebut?

Seperti tampak pada gambar di samping bahwa \(FD \) sejajar dengan \(BE \) dan \(FB \) sejajar dengan \(DE \), akibatnya jelas bahwa panjang \(FD = BE = 10 \text{ cm} \) dan \(DE = FB = 30 \text{ cm} \).

Sekarang coba selidiki perbandingan sisi-sisi yang bersesuaian yaitu

\[
\frac{AB}{AF} = \frac{BC}{FD} = \frac{AC}{AD}
\]

Apakah \(\frac{AC}{AD} = \frac{AB}{AF} = \frac{BC}{FD} \)?

Dari gambar diketahui bahwa panjang \(AB = 40 \text{ cm}, AF = 10 \text{ cm}, BC = 40 \text{ cm}, \) dan \(FD = 10 \text{ cm} \). Dengan teorema Phytagoras diperoleh bahwa panjang \(AC = 40\sqrt{2} \) dan panjang \(AD = 10\sqrt{2} \). Maka,

\[
\frac{AC}{AD} = \frac{AB}{AF} = \frac{BC}{FD} = \frac{4}{1}
\]

Berapa skala perbesaran pantograf tersebut?

Ukuran gambar asli : gambar salinan = 1 : 4

Gambar yang dihasilkan nanti berapa kali ukuran gambar aslinya?

Ukuran gambar salinan adalah 4 kali ukuran gambar asli

Nah, dengan menyelesaikan permasalahan di atas siswa telah menggunakan konsep kesebangunan dua bangun yaitu gambar asli dengan gambar hasil perbesarannya.
Ayo Kita Mencoba

Bersama teman sebangku, coba buatlah pantograf buatan kelompokmu yang bisa menghasilkan salinan gambar lima kali lebih besar.

Presentasikan pantograf hasil karya kelompokmu tersebut beserta gambar salinannya.

Pada Sub Bab 4.B siswa telah mempelajari bahwa dua bangun datar dikatakan sebangun jika memenuhi dua syarat sebagai berikut:

a. perbandingan panjang sisi yang bersesuaian senilai
b. sudut yang bersesuaian besarnya sama

Bagaimana menguji kesebangunan dua segitiga tanpa harus menguji kedua syarat di atas? Melalui kegiatan berikut ini, coba siswa temukan jawabannya.

Kegiatan 4.14 Syarat Dua Segitiga Sebangun

Kegiatan 4.14 Syarat Dua Segitiga Sebangun

Kerjakanlah kegiatan berikut ini bersama kelompokmu.

1. Gambarlah ΔABC dengan panjang sisi sesuai keinginanmu

 Misalkan seperti gambar berikut:

 ![Gambar 1](image1.png)

 ![Gambar 2](image2.png)

 2. Gambarlah $\Delta A'B'C'$ dengan panjang sisi k kali panjang sisi ΔABC

 (boleh diperbesar atau diperkecil)
3. Ukurlah masing-masing sudut $\triangle ABC$ dan $\triangle A'B'C'$ dengan menggunakan busur derajat. Bandingkan sudut-sudut yang bersesuaian dari dua segitiga tersebut.

4. Bandingkan hasilnya dengan temanmu.

5. Diskusikan dengan temanmu dan jawablah pertanyaan berikut:
 a) Apakah sudut-sudut yang bersesuaian sama besar?
 b) Berapakah perbandingan panjang sisi $\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{C'A'}{CA}$?
 c) Apakah segitiga yang diperbesar atau diperkecil dengan faktor skala yang sama akan sebangun dengan segitiga semula?

6. Dari Sub bab 4.2 siswa telah mengetahui bahwa dua segitiga kongruen jika panjang sisi yang bersesuaian sama pada $\triangle ABC$ dan $\triangle A'B'C'$ kongruen jika $\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{C'A'}{CA} = 1$. Berdasarkan no. 5, menurut siswa apakah $\triangle ABC$ dan $\triangle A'B'C'$ sebangun jika $\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{C'A'}{CA} = k$, dengan k tetap (konstan). Selidikilah.

7. Dari Sub Bab 4.2 siswa telah mengetahui bahwa dua segitiga kongruen jika dua pasang sisi yang bersesuaian sama panjang dan sudut yang diapitnya sama besar. (Kriteria sisi - sisi - sisi)
 Dalam hal ini, $\triangle ABC$ dan $\triangle A'B'C'$ kongruen jika $\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{C'A'}{CA} = 1$ dan $m\angle B = m\angle B'$. Menurut siswa apakah $\triangle ABC$ dan $\triangle A'B'C'$ sebangun jika $\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{C'A'}{CA} = k$, dengan k tetap (konstan) dan $m\angle B = m\angle B'$. Selidikilah.

8. Dari Sub Bab 4.2 siswa telah mengetahui bahwa dua segitiga kongruen jika dua pasang sudut yang bersesuaian sama besar dan sepasang sisi yang bersesuaian sama panjang. (Kriteria sudut - sudut - sisi)
 Dalam hal ini, $\triangle ABC$ dan $\triangle A'B'C'$ kongruen jika $\frac{A'B'}{AB} = 1$, $m\angle B = m\angle B'$, dan $m\angle C = m\angle C'$. Menurut siswa apakah $\triangle ABC$ dan $\triangle A'B'C'$ sebangun jika $\frac{A'B'}{AB} = k$, dengan k tetap (konstan), $m\angle B = m\angle B'$, dan $m\angle C = m\angle C'$. Bagaimana jika $\frac{A'B'}{AB} = k$ diabaikan, menurutmu apakah $\triangle ABC$ dan $\triangle A'B'C'$ sebangun jika $m\angle B = m\angle B'$, dan $m\angle C = m\angle C'$. Selidikilah.

Berdasarkan kegiatan di atas (khususnya nomor 6, 7, dan 8), menurutmu bagaimana syarat yang lebih sederhana sehingga dua segitiga sebangun?
Dua segitiga sebangun jika memenuhi salah satu syarat berikut ini:
1. Perbandingan ketiga pasangan sisi yang bersesuaian senilai.
2. Perbandingan dua pasang sisi yang bersesuaian sama dan sudut yang diapitnya sama besar.
3. Dua pasang sudut yang bersesuaian sama besar.

Kegiatan 4.15 Kesebangunan Khusus dalam Segitiga Siku-siku

Kegiatan 4.15 Kesebangunan Khusus dalam Segitiga Siku-siku

Alat dan bahan yang diperlukan:
1. Kertas lipat 4. Busur derajat
2. Pensil 5. Gunting
3. Penggaris

Kerjakanlah kegiatan berikut ini bersama kelompokmu.

2. Guntinglah salah satu segitiga ABC tersebut pada garis AD. Sehingga siswa sekarang mempunyai tiga buah segitiga yaitu $\triangle ABC$, $\triangle DBA$ dan $\triangle DAC$.

220 Buku Guru Kelas IX SMP/MTs
3. Perhatikan \(\triangle ABC\) dan \(\triangle DBA\)

Tumpulkan \(\triangle ABC\) dan \(\triangle DBA\) tersebut, di mana \(\angle B\) saling berimpit.

Selidikilah apakah \(\triangle ABC\) dan \(\triangle DBA\) sebangun? (gunakan kesimpulan yang sudah siswa peroleh dari Kegiatan 4.14 tentang syarat dua bangun sebangun).

Jika \(\triangle ABC\) dan \(\triangle DBA\) sebangun, tuliskan perbandingan sisi-sisi yang bersesuaian.

\[
\frac{AB}{DA} = \frac{BC}{AC} = \frac{CA}{CD}
\]

dan siswa akan memperoleh bahwa: \(AB^2 = DB \times BC\)

4. Perhatikan \(\triangle ABC\) dan \(\triangle DAC\)

Tumpulkan \(\triangle ABC\) dan \(\triangle DAC\) tersebut, di mana \(\angle B\) pada \(\triangle ABC\) dan \(\angle A\) pada \(\triangle DAC\) saling berimpit.

Selidikilah apakah \(\triangle ABC\) dan \(\triangle DAC\) sebangun? (gunakan kesimpulan yang sudah siswa peroleh \(\triangle ABC\) Kegiatan 4.14 tentang syarat dua bangun sebangun)

Jika \(\triangle ABC\) dan \(\triangle DAC\) sebangun, tuliskan perbandingan sisi-sisi yang bersesuaian.

\[
\frac{AB}{DA} = \frac{BC}{AC} = \frac{CA}{CD}
\]

dan siswa akan memperoleh bahwa: \(AC^2 = BC \times CD\)
5. Perhatikan $\triangle DBA$ dan $\triangle DAC$

Tumpulkah $\triangle DBA$ dan $\triangle DAC$ tersebut, di mana $\angle B$ pada $\triangle DBA$ dan $\angle A$ pada $\triangle DAC$ saling berhimpit.

Selidikilah apakah $\triangle DBA$ dan $\triangle DAC$ sebangun? (gunakan kesimpulan yang sudah siswa peroleh dari Kegiatan 4.14 tentang syarat dua bangun sebangun)

Jika $\triangle DBA$ dan $\triangle DAC$ sebangun, tuliskan perbandingan sisi-sisi yang bersesuaian.

$$\frac{AD}{CD} = \frac{DB}{DA} = \frac{BA}{AC}$$

dan siswa akan memperoleh bahwa: $AD^2 = DB \times DC$

Materi Esensi

Kesebangunan Dua Segitiga

Materi inti pada Sub Bab 4 D adalah kesebangunan dua segitiga.

Materi Esensi

Kesebangunan Dua Segitiga

Dua segitiga dikatakan sebangun jika hanya jika memenuhi syarat berikut ini:

(i) Perbandingan sisi-sisi yang bersesuaian senilai
(ii) Besar sudut-sudut yang bersesuaian sama.
(i) Perbandingan sisi-sisi yang bersesuaian senilai
\[
\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC} = a
\]
(ii) Besar sudut-sudut yang bersesuaian sama
\[
\angle A = \angle A' \\
\angle B = \angle B' \\
\angle C = \angle C'
\]
Jika \(\triangle ABC\) dan \(\triangle DEF\) memenuhi syarat tersebut, maka \(\triangle ABC\) dan \(\triangle A'B'C'\) sebangun, dinotasikan dengan \(\triangle ABC \sim \triangle A'B'C'\).

Jika \(\triangle ABC\) dan \(\triangle DEF\) tidak memenuhi syarat tersebut maka maka \(\triangle ABC\) dan \(\triangle DEF\) tidak sebangun, dinotasikan dengan \(\triangle ABC \sim \triangle A'B'C'\).

Catatan:
Ketika menyatakan dua segitiga sebangunsebaiknya berdasarkan titik-titik sudut yang bersesuaian dan berurutan, contohnya:
\[
\triangle ABC \cong \triangle A'B'C' \quad \text{atau} \quad \triangle BAC \cong \triangle B'A'C' \quad \text{atau} \quad \triangle CBA \cong \triangle C'B'A'
\]
\[
\triangle ABC \equiv \triangle B'C'A' \quad \text{atau} \quad \triangle ABC \equiv \triangle C'A'B' \quad \text{atau yang lainnya.}
\]

Syarat Dua Segitiga Sebangun

Untuk lebih sederhana, berdasarkan Kegiatan 4.14, dua segitiga dikatakan sebangun (misal: \(\triangle ABC \sim \triangle A'B'C'\)), jika memenuhi salah satu kondisi berikut ini:

1. **Perbandingannya ketiga pasangan sisi yang bersesuaian sama**, yaitu:
\[
\frac{A'B'}{AB} = \frac{B'C'}{BC} = \frac{A'C'}{AC} = a
\]
2. Dua pasang sudut yang bersesuaian sama besar.
Contoh: \(\angle A = \angle A' \) dan \(\angle B = \angle B' \)

3. Perbandingan dua pasang sisi yang bersesuaian sama dan sudut yang diapitnya sama besar.
Contoh:
\[
\frac{A'B'}{AB} = \frac{A'C'}{AC} = a
\]
dan
\(\angle A = \angle A' \)

Kesebangunan Khusus dalam Segitiga Siku-Siku
Perhatikan gambar. Berdasarkan Kegiatan 3, dengan memperhatikan bahwa \(\triangle ABC \sim \triangle DBA \), \(\triangle ABC \sim \triangle DAC \) dan \(\triangle DBA \sim \triangle DAC \), diperoleh:

\[
AB^2 = BD \times BC
\]
\[
AC^2 = CD \times CB
\]
\[
AD^2 = DB \times DC
\]
Contoh 4.8: Membuktikan Dua Segitiga Sebangun

Perhatikan gambar di bawah ini.

Alternatif Penyelesaian:

Pada $\triangle ABC$ dan $\triangle ADE$ dapat diketahui bahwa:

$m\angle ABC = m\angle ADE$

(karena $BC \parallel DE$, sehingga $\angle ABC$ dan $\angle ADE$ adalah pasangan sudut yang sehadap, besarnya pasti sama)

Buktikan bahwa $\triangle ABC \sim \triangle ADE$.

$m\angle BAC = m\angle DAC$

(karena $\angle BAC$ dan $\angle DAC$ berimpit)

Karena dua pasang sudut yang bersesuaian sama besar, jadi $\triangle ABC \sim \triangle ADE$.

(terbukti).

Contoh 4.9: Menghitung Panjang Sisi dan Besar Sudut yang Belum Diketahui dari Dua Segitiga Sebangun

Contoh 4.9
Menghitung Panjang Sisi dan Besar Sudut yang Belum Diketahui dari Dua Segitiga Sebangun

Perhatikan gambar di bawah ini.

![Diagram Segitiga Sebangun](image)

Tentukan
a. panjang sisi DE dan AB
b. besar $\angle ACB$, $\angle ADE$ dan $\angle DAE$

Alternatif Penyelesaian:
Pada Contoh 4.8, sudah dibuktikan bahwa $\triangle ABC$ dan $\triangle ADE$ sebangun.

a. Perbandingan sisi-sisi yang bersesuaian adalah

$$\frac{AB}{AD} = \frac{BC}{DE} = \frac{AC}{AE}$$

Diketahui:
panjang $AC = 4$ cm, $AE = AC + CE = 4 + 8 = 12$ cm, maka

$$\frac{AC}{AE} = \frac{4}{12} = \frac{1}{3}$$

panjang $BC = 5$ cm, maka

$$\frac{BC}{DE} = \frac{AC}{AE}$$

$$\frac{5}{DE} = \frac{1}{3}$$

$DE = 5 \times 3$

$DE = 15$

panjang $BD = 5$ cm, maka

$$\frac{AB}{AD} = \frac{AC}{AE}$$
\[
\frac{AB}{AB+BD} = \frac{1}{3}
\]
\[
\frac{AB}{AB+5} = \frac{1}{3}
\]

3\(AB = 1 \times (AB + 5)
\)
\[
3AB = AB + 5
\]
\[
3AB - AB = 5
\]
\[
2AB = 5
\]
\[
\frac{2AB}{2} = 5
\]
\[
AB = 2.5
\]

Jadi panjang \(DE = 15\) cm dan \(AB = 2,5\) cm

b. Sudut-sudut yang bersesuaianan besarnya sama
\[
m\angle ABC = m\angle ADE \quad \text{(Mengapa?)}
\]
\[
m\angle ACB = m\angle AED \quad \text{(Mengapa?)}
\]
\[
m\angle BAC = m\angle DAE \quad \text{(Mengapa?)}
\]

Sehingga,
\[
m\angle ACB = m\angle AED = 37^o
\]
\[
m\angle ADE = m\angle ABC = 53^o
\]
\[
m\angle DAE = 180^o - (m\angle ADE + m\angle AED) \quad \text{(Mengapa?)}
\]
\[
= 180^o - (53^o + 37^o)
\]
\[
= 180^o - 90^o
\]
\[
= 90^o
\]

Jadi, besar \(\angle ACB = 37^o\), \(\angle ADE = 53^o\) dan \(\angle DAE = 90^o\).

Contoh 4.10

Penerapan Sederhana dari Kesebangunan Segitiga

Contoh 4.10 Penerapan Sederhana dari Kesebangunan Segitiga

Diketahuiseorang siswa dengan tinggi badan 150 cm berdiri di lapangan pada pagi hari yang cerah dan panjang bayangannya adalah 2,5 m. Saat itu di sebelahnya terdapat tiang bendera dengan panjang bayangan 6 m, maka tentukan tinggi tiang bendera tersebut.

Alternatif Penyelesaian:

Diketahui:
Tinggi badan siswa = 150 cm
Panjang bayangan siswa = 2,5 m = 250 cm
Panjang bayangan tiang bendera = 6 m = 600 cm
Misal tinggi tiang bendera = t

Permasalahan di atas dapat dibuat model atau sketsa sebagaimai berikut:

![Diagram segitiga kesebangunan](image)

$\triangle ABC \sim \triangle DEC$, sehingga

$$\frac{AB}{DE} = \frac{CE}{CB}$$

$$\frac{t}{150} = \frac{600}{250}$$

$$250 \cdot t = 150 \times 600$$

$$t = \frac{150 \times 600}{250}$$

$$t = 360$$

Jadi, tinggi tiang bendera tersebut adalah 360 cm atau 3,6 m.

Ayo Silakan Bertanya

Setelah mempelajari contoh-contoh di atas, pertanyaan apakah yang muncul di benakmu. Silakan tanyakan pada guru dan temanmu.
Ayo Kita Menalar

Coba pikirkan alternatif cara lain bagaimana menyelesaikan permasalahan yang serupa dengan Contoh 4.10 di atas jika tanpa menggunakan bayangan objek yang diamati.

Ayo Kita Gali Informasi

Coba siswa cari informasi dari buku, internet atau lainnya mengenai berbagai cara memperkirakan tinggi pohon, tinggi gedung, tinggi bukit, atau lebar sungai secara tidak langsung dengan alat bantu seadanya.

Carilah pula alat ukur modern apa saja yang bisa digunakan untuk itu dan jelaskan cara kerjanya.

Ayo Kita Tinjau Ulang

Diskusikan dengan temanmu masalah berikut ini.
2. Hitunglah panjang sisi-sisi yang belum diketahui.

Penyelesaian:

Untuk pembuktian pasangan segitiga yang kongruen silakan dicoba sendiri.

Panjang sisi:
(i) \(PT = 6 \text{ cm}, \ ST = 12 \text{ cm}. \)
(ii) \(FE = 9 \text{ cm}, \ AD = FE = 9 \text{ cm}, \ CA = 11,67 \text{ cm}, \ FA = 6,67 \text{ cm}. \)
(iii) \(BC = 24 \text{ cm}, \ CE = 16 \text{ cm}, \ DE = 7 \text{ cm}. \)
Selesaikan soal-soal berikut ini dengan benar dan sistematis.

1. Pada gambar di samping, panjang $QR = ST$.
 a. Buktikan bahwa $\triangle QRP$ dan $\triangle TPS$ sebangun
 b. Tuliskan perbandingan sisi-sisi yang bersesuaian?

Penyelesaian:

 a. $\angle RQP = \angle STP$ (berseberangan dalam)
 $\angle QRP = \angle TSP$ (berseberangan dalam)
 $\angle QPR = \angle TPS$ (bertolak belakang)

 Jadi, $\triangle QRP \sim \triangle TPS$ karena sudut-sudut yang bersesuaian sama besar.

 (sebenarnya cukup hanya 2 pasang sudut yang bersesuaian sama besar maka dua segitiga bisa dikatakan sebangun)

 b. Perbandingan sisi-sisi yang bersesuaian

 $\frac{QR}{TS} = \frac{RP}{SP} = \frac{QP}{TP}$
2. Perhatikan gambar berikut.

a. Buktikan bahwa \(\triangle ABC \) dan \(\triangle PQR \) sebangun.

b. Tuliskan perbandingan sisi-sisi yang bersesuaian?

Penyelesaian:

a. \[PQ = \sqrt{20^2 - 16^2} = \sqrt{400 - 256} = 12 \]
 \[\frac{AB}{PQ} = \frac{4}{16} = \frac{1}{4} \]
 \[m\angle BAC = m\angle QPR = 90^\circ \text{ (diketahui)} \]
 \[\frac{AC}{PR} = \frac{3}{12} = \frac{1}{4} \]
 Jadi, \(\triangle ABC \sim \triangle PQR \) karena memenuhi syarat kesebangunan dua segitiga yaitu perbandingan dua pasang sisi yang bersesuaian sama dan sudut yang diapitnya sama besar.

b. Perbandingan sisi-sisi yang bersesuaian

\[\frac{AB}{PQ} = \frac{AC}{PR} = \frac{BC}{QR} \]

3. Perhatikan gambar berikut.

Apakah \(\triangle KLN \) sebangun dengan \(\triangle OMN \)?
Buktikan.

Iya. \(\triangle KLN \sim \triangle OMN \)
Bukti:
\[m\angle NKL = m\angle NOM \] (siku-siku)
\[m\angle KNL = m\angle ONM \] (berhimpit)
\(m \angle KLN = m \angle OMN \) (sehadap karena \(OM \parallel KL \))

Jadi, \(\triangle KLN \sim \triangle OMN \) karena sudut-sudut yang bersesuaian sama besar.

(sebenarnya cukup hanya 2 pasang sudut yang bersesuaian sama besar maka dua segitiga bisa dikatakan sebangun)

4. Pada \(\triangle ABC \) dan \(\triangle PQR \) diketahui \(m \angle A = 105^\circ \), \(m \angle B = 45^\circ \), \(m \angle P = 45^\circ \) dan \(m \angle Q = 105^\circ \).
 b. Tulislah pasangan sisi yang mempunyai perbandingan yang sama.

Penyelesaian:
 a. (Silakan digambar)
 Iya, kedua segitiga tersebut sebangun karena dua pasang sudut yang bersesuaian sama besar, yaitu \(m \angle A = m \angle Q = 105^\circ \) dan \(m \angle B = m \angle P = 45^\circ \).
 b. \(\overline{AB} \) dengan \(\overline{QP} \), \(\overline{BC} \) dengan \(\overline{PR} \), dan \(\overline{AC} \) dengan \(\overline{QR} \).

5. Perhatikan gambar.
 Diketahui \(m \angle ABC = 90^\circ \), siku-siku di B.
 a. Tunjukkan bahwa \(\triangle ADB \) dan \(\triangle ABC \) sebangun.
 b. Tunjukkan bahwa \(\triangle BDC \) and \(\triangle ABC \) sebangun.

Penyelesaian:
 a. \(m \angle BAD = m \angle CAB \) (berhimpit)
 \(m \angle BDA = m \angle BCA = 90^\circ \) (diketahui siku-siku)
 Dua pasang sudut yang bersesuaian sama besar, maka \(\triangle ADB \sim \triangle ABC \).
 b. \(m \angle BCD = m \angle ACB \) (berhimpit)
 \(m \angle CDB = m \angle CBA = 90^\circ \) (diketahui siku-siku)
 Dua pasang sudut yang bersesuaian sama besar, maka \(\triangle BDC \sim \triangle ABC \).

6. Perhatikan gambar.
 a. Tunjukkan bahwa \(\triangle FCE \sim \triangle ACB \).
 b. Tunjukkan bahwa \(\triangle FCE \sim \triangle DEB \).
 c. Tunjukkan bahwa \(\triangle ACB \sim \triangle DEB \).
 d. Tentukan panjang \(FE \) dan \(AF \).
Petunjuk:

a. s/d c. Carilah sudut-sudut yang bersesuaian dan sama besar.
Gunakan sifat sudut-sudut yang dibentuk oleh garis sejajar yang dipotong oleh garis lain.

d. $FE = 6 \text{ cm, } AF = 8 \text{ cm}$.

7. Perhatikan gambar.

a. Hitunglah panjang EB b. Hitunglah panjang CE

Penyelesaian:
a. $EB = 2,4 \text{ cm}$ b. $CE = 8 \text{ cm}$.

8. Perhatikan gambar.

Hitunglah panjang MN pada gambar di bawah ini.

Penyelesaian: $MN = 17 \text{ cm}$.

Tentukan:
a. Pasangan segitiga yang sebangun.
b. Pasangan sudut yang sama besar dari masing-masing pasangan segitiga yang sebangun tersebut.
c. Pasangan sisi bersesuaian dari masing-masing pasangan segitiga yang sebangun tersebut.
d. Panjang sisi BA, BC, dan BD.

MATHEMATICA 233
Penyelesaian:

a. \(\triangle ABC \sim \triangle BDC, \triangle ABC \sim \triangle ADB, \triangle ADB \sim \triangle BDC \).

b. \(\triangle ABC \sim \triangle BDC \)
 \[m \angle ABC = m \angle BDC, \ m \angle BAC = m \angle DBC, \ \text{dan} \ \ m \angle ACB = m \angle BCD \]

\(\triangle ABC \sim \triangle ADB \)
 \[m \angle ABC = m \angle ADB, \ m \angle BAC = m \angle DAB, \ \text{dan} \ \ m \angle ACB = m \angle ABD \]

\(\triangle ADB \sim \triangle BDC \)
 \[m \angle ADB = m \angle BDC, \ m \angle DAB = m \angle DBC, \ \text{dan} \ \ m \angle ABD = m \angle BCD \]

c. \(\triangle ABC \sim \triangle BDC \)
 \[\overline{AB} \rightarrow \overline{BD}, \ \overline{BC} \rightarrow \overline{DC}, \ \text{dan} \ \overline{CA} \rightarrow \overline{CB} \]

\(\triangle ABC \sim \triangle ADB \)
 \[\overline{AB} \rightarrow \overline{AD}, \ \overline{BC} \rightarrow \overline{DB}, \ \text{dan} \ \overline{CA} \rightarrow \overline{BA} \]

\(\triangle ADB \sim \triangle BDC \)
 \[\overline{AD} \rightarrow \overline{BD}, \ \overline{DB} \rightarrow \overline{DC}, \ \text{dan} \ \overline{BA} \rightarrow \overline{CB} \]

d. \(BA = 40 \ cm, \ BC = 30 \ cm, \ \text{dan} \ BD = 24 \ cm \)

\[\text{Diketahui} \ PR = 15 \ cm \ \text{dan} \ QU = \frac{2}{3} \ UP. \]

Tentukan panjang \(TS \).

\[\text{Penyelesaian:} \]

\[TS = 9 \ cm \]

Petunjuk: tentukan dulu panjang \(UT \) dengan menggunakan kesebangunan

\[\triangle QUT \sim \triangle QPR, \ \text{diperoleh} \ UT = 6 \ cm. \]

\[US = PR = 15 \ cm, \]

\[TS = US - UT = 15 \ cm - 6 \ cm = 9 \ cm \]

11. Perhatikan gambar.

\[\text{Diketahui} \ KL = 10 \ cm \ \text{dan} \ MN = 14 \ cm. \ P \ \text{dan} \ Q \ \text{berturut-turut adalah titik tengah} \ LN \ \text{dan} \ KM. \ \text{Tentukan panjang} \ PQ. \]

\[\text{Penyelesaian:} \ PQ = 2 \ cm. \]
12. Perhatikan gambar.

Segitiga ABC adalah segitiga siku-siku sama kaki. Jika $AB = 10 \text{ cm}$ dan CD garis bagi sudut C, tentukan panjang BD.

Penyelesaian:

\[BD = ED = EA = 10\sqrt{2} - 10 = 10(\sqrt{2} - 1) \text{ cm}\]

Petunjuk:

\[\triangle ABC\] siku-siku samakaki ($m\angle ABC = 90^\circ$), maka

\[BC = AB = 10 \text{ cm}, AC = 10\sqrt{2} \text{ cm}, m\angle BCA = m\angle BAC = 45^\circ,\text{ dan } AC = 10\sqrt{2} \text{ cm.}\]

\[\triangle CBD \sim \triangle CED\] karena $DC = DC$ (berhipmit), $m\angle BCD = m\angle ECD$ (diketahui), dan $m\angle DBC = m\angle DEC = 90^\circ$. Akibatnya $BC = EC = 10 \text{ cm}$ dan $BD = ED$.

Perhatikan $\triangle DAE$, $m\angle DAE = m\angle BAC = 45^\circ$ (berhipmit), maka $m\angle ADE = 45^\circ$.

Berarti $\triangle DAE$ adalah segitiga siku-siku samakaki.

Sehingga, $ED = AE = AC - EC = 10\sqrt{2} - 10 = 10(\sqrt{2} - 1) \text{ cm}$.

13. **Memperkirakan Tinggi Rumah**

Pada suatu sore, sebuah rumah dan pohon yang bersebelahan memiliki panjang bayangan berturut-turut 10 m dan 4 m. Jika tenyata tinggi pohon sebenarnya adalah 10 m, tentukan tinggi rumah tersebut sebenarnya.

Penyelesaian: tinggi rumah sebenarnya adalah 25 m.

14. **Memperkirakan Tinggi Pohon**

Untuk menentukan tinggi sebuah pohon, Ahmad menempatkan cermin di atas tanah (di titik E) seperti gambar di bawah ini. Dari titik E Ahmad berjalan mundur (ke titik D), sedemikian hingga dia dapat melihat ujung pohon pada cermin. Ahmad mengukur panjang $BE = 18 \text{ m}$, $ED = 2,1 \text{ cm}$ dan ketika berdiri jarak mata Ahmad ke tanah (CD) adalah 1,4 m. Perkirakan tinggi pohon tersebut.

Penyelesaian: tinggi pohon kira-kira 12 m.
15. **Memperkirakan Tinggi Bukit**

(perhatikan gambar)

Penyelesaian: tinggi bukit kira-kira 927 m.

16. **Analisis Kesalahan**

Gambar (a) menunjukkan persegi dengan panjang sisi 8 satuan. Persegi itu dibagi menjadi 4 bagian yaitu dua segitiga (P dan Q), serta dua trapesium (R dan S). Gambar (b) menunjukkan persegi panjang berukuran 5 satuan x 13 satuan. Persegi itu dibagi menjadi 4 bagian yaitu dua segitiga (P' dan Q'), serta dua trapesium (R' dan S'). Apakah $8 \times 8 = 5 \times 13$? Jika tidak, bagaimana siswa menjelaskan hal ini? Di mana letak kesalahannya?
Petunjuk:
Gambar ulang dengan teliti, akan ditemukan bahwa
\(P \neq P' \), \(Q \neq Q' \), \(R \neq R' \), dan \(S \neq S' \).
(Selidikilah kemiringan garis yang ditunjuk di atas)

17. Analisis Kesalahan
Perhatikan gambar di bawah ini! Jelaskan di manakah letak kesalahannya?

Jelaskan dari manakah lubang satu kotak ini berasal?

Petunjuk:
Gambar ulang dengan teliti, akan ditemukan bahwa
Gambar (i) dan (ii) tidak kongruen.
(Selidikilah kemiringan garis yang ditunjuk di atas)

Proyek 4

Kerjakan proyek di bawah ini bersama kelompokmu.

1. Perhatikan gambar jembatan Suramadu dan jembatan Barito di bawah ini.

 (i) Jembatan Suramadu (ii) Jembatan Barito

 Sumber: www.jalan2.com

 a. Berdasarkan gambar di atas, susunlah strategi bagaimana siswa dapat memperkirakan tinggi tiang jembatan Suramadu dan jembatan Barito?
 b. Berdasarkan strategi tersebut kira-kira berapa tinggi tiang jembatan Suramadu tersebut?
 c. Presentasikan hasil kerja kelompok di kelas.

2. Coba carilah gedung, pohon, tiang listrik atau tiang bendera yang ada di sekitar sekolahmu. Bersama temanmu,
 a. Buat strategi untuk memperkirakan tinggi gedung, pohon, tiang listrik atau tiang bendera tersebut dengan menggunakan konsep kesebangunan dua segitiga. (minimal dua strategi yang berbeda).
 b. Berdasarkan strategi yang siswa buat, perkirakan berapa gedung, pohon, tiang listrik atau tiang bendera tersebut?
 c. Presentasikan hasil kerja kelompok di kelas.
3. Coba carilah sungai atau danau yang ada di sekitar sekolah atau rumahmu. Bersama temanmu,
 a. Buatlah strategi untuk memperkirakan lebar sungai atau danau tersebut dengan menggunakan konsep kesebangunan atau kekongruenan dua segitiga.
 b. Berdasarkan strategi yang siswa buat, perkirakan berapa gedung, pohon, tiang listrik atau tiang bendera tersebut?
 c. Presentasikan hasil kerja kelompok di kelas.

4. Bersama temanmu, buatlah pantograf buatan kelompokmu yang bisa menghasilkan salinan gambar k kali lebih besar (boleh \(k = 2, 3, 4, 5 \) atau lebih). Dokumntasikan prosesnya. Presentasikan pantograf hasil karya kelompokmu tersebut beserta gambar salinannya.
Uji Kompetensi 4
Kekongruenan dan Kesebangunan

- Uji Kompetensi 4 dapat digunakan sebagai Ulangan Harian untuk mengetahui kompetensi yang telah dicapai siswa berkaitan dengan Kekongruenan dan Kesebangunan.
- Jika memungkinkan guru dapat membuat soal lain agar lebih bervariasi untuk Uji Kompetensi.
- Siswa sudah tuntas apabila sudah mencapai nilai 75 dan siswa diberi soal tambahan yang lebih menantang, dan apabila masih kurang dari 75 maka guru melakukan pembelajaran remedial sebelum melanjutkan ke materi berikutnya.

Selesaikan soal-soal berikut dengan benar dan sistematis.

1. Perhatikan gambar di bawah ini. Tulislah pasangan bangun yang kongruen.

![Gambar pasangan bangun](image)

Penyelesaian: \(A \cong K, B \cong F, C \cong M, E \cong H, G \cong J \).

2. Perhatikan gambar.

![Gambar segi empat](image)

Jika segi empat \(PQRS \) kongruen dengan segi empat \(TUVR \) dan \(RT = \frac{3}{5} RQ \). Tentukan panjang \(PQ \).

Penyelesaian: \(PQ = 4,8 \text{ cm} \).
3. Perhatikan gambar.
 Persegipanjang \(ABCD\) dibentuk dari 5 persegipanjang yang kongruen. Jika keliling setiap persegipanjang kecil adalah 10 cm, maka tentukan keliling \(ABCD\).
 Penyelesaian: Keliling \(ABCD = 36\) cm, Luas \(ABCD = 80\) cm\(^2\).

4. Diketahui trapesium \(ABCD\) dan trapesium \(EFGH\) pada gambar di bawah ini adalah kongruen. Jika panjang \(AD = 12\) cm, \(DC = 9\) cm dan \(EF = 18\) cm. Tentukan panjang \(CB\).

 ![Diagram Trapesium](image)

 Penyelesaian: CB = 15 cm.

5. Pasangan bangun di bawah ini kongruen, tentukan nilai \(x\) dan \(y\) pada gambar.

 ![Diagram Pasangan Bangun](image)

 Penyelesaian:
 (i) \(x = 52^\circ, y = 70^\circ\) (ii) \(x = 85^\circ, y = 80^\circ\)

6. Perhatikan gambar di bawah ini.

 ![Diagram Pasangan Bangun](image)
Berapa banyak pasangan segitiga kongruen pada setiap bangun di atas? Tuliskan semua pasangan segitiga kongruen tersebut.

Penyelesaian:

a. ada 3 pasang, yaitu \(\triangle AED \cong \triangle AEB, \triangle CDE \cong \triangle CBE, \triangle ADC \cong \triangle ABC \)

b. ada 4 pasang, yaitu \(\triangle IFJ \cong \triangle GHI, \triangle FIH \cong \triangle HGF, \triangle IJH \cong \triangle GJF, \triangle IJF \cong \triangle GJH \)

c. ada 2 pasang, yaitu \(\triangle MKO \cong \triangle NLO, \triangle MKL \cong \triangle NLK \)

d. ada 3 pasang, yaitu \(\triangle PST \cong \triangle QRT, \triangle PQR \cong \triangle QRS, \triangle PSQ \cong \triangle QRP \)

7. Apakah pasangan segitiga berikut ini pasti kongruen? Jika ya, kriteria apakah yang menjamin pasangan segitiga berikut ini kongruen?

a.

![Diagram a](image)

b.

![Diagram b](image)

c.

![Diagram c](image)

d.

![Diagram d](image)
Penyelesaian:

a. Sisi – sudut – sisi
b. Sudut 90° – sisi miring – satu sisi siku
 (kekongruenan khusus segitiga siku-siku)
c. Sudut – sisi – sudut
d. Sudut – sisi – sudut atau dengan kriteria sisi – sudut – sudut
e. Sisi – sudut – sisi

8. Tuliskan satu pasangan segitiga kongruen pada setiap bangun berikut dan buktikan.

Panjang $PM = PN$ dan Panjang $PQ = PR$
Panjang $PX = SR$ dan Panjang ΔPQR segitiga sama sisi

Penyelesaian:

a. Contoh: $\Delta PQN \cong \Delta PRM$

 bukti: $PN = PM$ (diketahui),

 $m\angle QPN = m\angle RPM$ (berhimpit)

 $PQ = PR$ (diketahui)

 Jadi, $\Delta PQN \cong \Delta PRM$ (berdasarkan kriteria sisi – sudut – sisi)

(b) pasangan segitiga kongruen yang lain silakan dicari dan dibuktikan.

b. $\Delta PSR \cong \Delta QXP$

 bukti: $SR = PX$ (diketahui),

 $m\angle PRS = m\angle QPX$ (berseberangan dalam, karena $SR//PQ$)

 $PR = QP$ (ΔPQR segitiga samasisi)

 Jadi, $\Delta PSR \cong \Delta QXP$ (berdasarkan kriteria sisi – sudut – sisi)
c. Contoh: \(\triangle ABC \cong \triangle CDA \)

\(AB \parallel DC, AD \parallel BC \) akibatnya \(AB = CD \) dan \(AD = CB \)

\(AC \) (pada \(\triangle ABC \)) = \(AC \) (pada \(\triangle CDA \))

Jadi, \(\triangle ABC \cong \triangle CDA \) (berdasarkan kriteria sisi – sisi – sisi)

Pembuktian \(\triangle ABC \cong \triangle CDA \) juga bisa dengan kriteria sudut – sisi – sudut

\(m\angle BAC = m\angle DCA \) (berseberangan dalam, karena \(AB \parallel DC \))

\(AC \) (pada \(\triangle ABC \)) = \(AC \) (pada \(\triangle CDA \)) (berhipmit)

\(m\angle ACB = m\angle CAD \) (berseberangan dalam, karena \(AB \parallel DC \))

Jadi, \(\triangle ABC \cong \triangle CDA \) (berdasarkan kriteria sudut – sisi – sudut)

(pasangan segitiga kongruen yang lain silakan dicari dan dibuktikan)

Diketahui \(\triangle PQR \cong \triangle KLM \) dan \(m\angle PQR = 60^\circ \).

Tentukanlah.

a. besar \(m\angle PRQ \)

b. besar \(m\angle LKM \)

c. besar \(m\angle KML \)

d. panjang \(KL \)

e. Panjang \(KM \)

Penyelesaian:

a. \(m\angle PRQ = 22,6^\circ \)
d. panjang \(KL = 5 \) cm

b. \(m\angle LKM = 67,4^\circ \)
e. Panjang \(KM = 13 \) cm

c. \(m\angle KML = 22,6^\circ \)

Diketahui \(AC = AE \) dan \(m\angle BAC = m\angle DAE \)

a. Buktikan bahwa \(\triangle ABC \cong \triangle ADE \).

b. Jika Panjang \(CD = 2 \) cm dan \(AE = 10 \) cm,

c. Tentukanlah panjang \(BC \) dan \(AB \)

Penyelesaian:

a. \(AC = AE \)

\(m\angle BAC = m\angle DAE \)

\(m\angle ABC = m\angle ADE \)

Jadi, \(\triangle ABC \cong \triangle ADE \) berdasarkan kriteria sisi – sudut – sudut.

b. \(BC = 6 \) cm, \(AB = 8 \) cm.
11. Perhatikan gambar di samping.
Diketahui panjang \(AB = 13 \) cm dan \(EF = 5 \) cm.

a. Buktikan bahwa \(\Delta AFE \cong \Delta DFE \)

b. Buktikan bahwa \(\Delta DCB \cong \Delta DFE \)

c. Hitunglah panjang \(AC \)

d. Hitunglah panjang \(AE \)

Penyelesaian:

a. \(AF = DF \) (diketahui)
\[m\angle AFE = m\angle DFE = 90^\circ \] (diketahui siku-siku)
\(EF \) (pada \(\Delta AFE \)) = \(EF \) (pada \(\Delta DFE \)) (berhimpit)

Jadi, \(\Delta AFE \cong \Delta DFE \) berdasarkan kriteria sisi – sudut – sisi.

b. \(DC = DF \) (diketahui)
\[m\angle BDC = m\angle EDF \] (bertolak belakang)
\(DB = DE \) (diketahui)

Jadi, \(\Delta DCB \cong \Delta DFE \) berdasarkan kriteria sisi – sudut – sisi.

c. \(EF = 5 \) cm, \(BC = EF = 5 \) cm
(karena \(\Delta DCB \cong \Delta DFE \) dan \(\overline{BC} \) bersesuaian dengan \(\overline{EF} \))
\(AB = 13 \) cm, \(BC = 5 \) cm, \(\Delta ABC \) siku-siku di \(C \), dengan teorema Phytagoras maka \(AC = 12 \) cm.

d. Lihat \(\Delta AFE \), \(EF = 5 \) cm, \(AF = \frac{AC}{3} = \frac{12}{3} = 4 \) cm, dengan teorema Phytagoras
maka \(AE = \sqrt{5^2 + 4^2} = \sqrt{25 + 16} = \sqrt{41} \)

a. dua persegi → pasti sebangun
b. dua lingkaran → pasti sebangun
c. dua segitiga sama sisi → pasti sebangun
d. dua belahketupat → belum tentu sebangun

13. Trapezium \(ABCD \) sebangun dengan trapesium \(PQRS \), tentukan nilai \(x \) dan \(y \) pada gambar di bawah.
Penyelesaian:

\[x = 14 \text{ cm}, \ y = 18 \text{ cm} \]

(a)

(b)

Penyelesaian:

a. Jika trapesium (i) dan (ii) sebangun, tentukan nilai \(p, q, r \) dan \(s \).

b. Tentukan perbandingan keliling trapesium (i) dan (ii).

c. Tentukan perbandingan luas trapesium (i) dan (ii).

Penyelesaian:

a. \(p = 18 \text{ cm}, \ q = 18 \text{ cm}, \ r = 10 \text{ cm}, \) dan \(s = 15 \text{ cm} \).

b. Keliling trapesium (i) : Keliling trapesium (ii) = 2 : 3

c. Luas trapesium (i) : Luas trapesium (ii) = 4 : 9

15. Hitunglah panjang sisi yang ditanyakan pada gambar berikut ini.

(a)

(b)

(c)

(d)

\[EF = \ldots \text{ cm} \]

\[AB = \ldots \text{ cm} \]

\[AE = \ldots \text{ cm} \]

\[CF = \ldots \text{ cm} \]
Penyelesaian:

a. $EF = 4,8 \text{ cm}$

b. $AB = 10,5 \text{ cm}$

c. $AE = 6 \text{ cm}$

d. $CF = 10 \text{ cm}$

e. $AE = 12 \text{ cm}$

f. $EF = 6 \text{ cm}$

16. Diketahui trapesium samakaki $PQRS$ pada gambar di bawah ini, dengan panjang $SR = 4 \text{ cm}$, $PQ = 12 \text{ cm}$ dan $QS = 20 \text{ cm}$. Tentukan panjang SO.

Petunjuk: gunakan kesebangunan ΔPOQ dan ΔROS. Penyelesaian: $SO = 5 \text{ cm}$

17. Perhatikan gambar.

Penyelesaian:

a. Tuliskan pasangan segitiga sebangun pada gambar tersebut.

b. Dari tiap-tiap pasangan segitiga sebangun tersebut, tentukan pasangan sisi yang bersesuaian dan buat perbandingannya.

c. Tentukan panjang NK, KL dan MK.

$$\frac{MK}{MN} = \frac{KL}{NK} = \frac{LM}{KM}$$
c. \(\triangle MKL \sim \triangle KNL \), perbandingan sisi yang bersesuaian yaitu
\[
\frac{MK}{KN} = \frac{KL}{NL} = \frac{LM}{LK}
\]
d. \(\triangle MNK \sim \triangle NKL \), perbandingan sisi yang bersesuaian yaitu
\[
\frac{MN}{KN} = \frac{MK}{KL} = \frac{NK}{NL}
\]
e. \(NK = 12 \text{ cm}, KL = 15 \text{ cm}, \text{ dan } MK = 20 \text{ cm} \)

18. \(ABCD \) adalah persegi.
 Jika panjang \(DE = CF \), maka tentukanlah panjang:
 a. \(DE \)
 b. \(OE \)
 c. \(OD \)
 d. \(OC \)
 e. \(OF \)

 Penyelesaian:
 \(DE = 10 \text{ cm}, OE = 3,6 \text{ cm}, OD = 6,4 \text{ cm}, OC = 4,8 \text{ cm}, OF = 5,2 \text{ cm}. \)

19. Hitunglah panjang sisi yang diberi label pada gambar di bawah ini.
 (semua dalam satuan sentimeter)

 Penyelesaian:
 \(a = 6 \frac{3}{7} \text{ cm}, b = 12 \frac{6}{7} \text{ cm}, c = 5 \text{ cm}, d = 7 \text{ cm}, e = 10 \text{ cm}, f = 8 \frac{4}{7} \text{ cm} \)
 \(p = 4 \text{ cm}, q = 8 \text{ cm}, x = 25,2 \text{ cm}, y = 28,8 \text{ cm}, z = 9,6 \text{ cm} \)
20. Dua belas tusuk gigi disusun seperti pada gambar di samping. Dengan memindahkan hanya dua tusuk gigi bagaimana siswa membentuk enam persegii atau tujuh persegi?

Penyelesaian:
Gambar di atas bisa dikatakan terdiri dari 6 persegi yaitu 2 persegi besar dan 4 persegi kecil. Dapat juga dikatakan terdiri dari 7 persegi yaitu 3 persegi besar dan 4 persegi kecil.

21. Enam belas tusuk gigi disusun seperti gambar di samping. Dengan memindahkan hanya dua tusuk gigi bagaimana siswa membentuk empat persegi?

Petunjuk:
Pindahkan/geser tusuk gigi biru ke kanan 1 kotak dan tusuk gigi merah ke atas 1 kotak.

22. Pada gambar di bawah ini menunjukkan persegi yang dibentuk dengan 20 tusuk gigi. Di tengahnya terdapat lubang kotak dengan luas \(\frac{1}{25} \) luas seluruhnya. Dengan menggunakan 18 tusuk gigi, bagilah luasan di antara persegi luar dan persegi di tengah menjadi 6 daerah yang sebangun.

Penyelesaian:

23. Perhatikan gambar.
Bangun \(PINK, NOTE, \) dan \(BLUE \) adalah persegi. Panjang \(KN = 5 \) cm, \(NE = 9 \) cm, Titik \(P \) – \(O \) – \(B \) terletak dalam satu garis lurus. Tentukan panjang sisi dan luas bangun \(BLUE \).
Penyelesaian:
panjang sisi bangun \(\text{BLUE} = 16,2 \) cm dan luasnya \(262,44 \text{ cm}^2 \).
(Gunakan kesebangunan \(\triangle PIO \) dan \(\triangle OTB \))

24. Pada gambar di bawah ini, tinggi tongkat \(PQ \) sesungguhnya adalah 4 m dan panjang bayangannya 15 m. Jika panjang bayangan pohon adalah 30 m, tentukan tinggi pohon.

Penyelesaian:
Tinggi pohon adalah 8 meter.
(Gunakan perbandingan sisi-sisi yang bersesuaian, dalam hal ini \(\frac{PQ}{SR} = \frac{PQ}{OR} \))

25. Sekelompok peserta jelajah alam mendapat tugas untuk menaksir lebar suatu sungai tanpa mengukurnya secara langsung. Mereka menentukan titik acuan di seberang sungai yaitu titik \(A \). Satu peserta lain berdiri di titik \(C \). Peserta yang lain berdiri di titik \(B \) tepat di depan \(A \). Kemudian berjalan menuju ke titik \(F \) dengan jarak \(B \) ke \(F \) adalah dua kali jarak \(B \) ke \(C \). Dari titik \(F \) ia berjalan menuju titik \(D \), di mana dengan pandangannya objek di titik \(A-C-D \) terletak pada satu garis lurus. Sehingga lebar sungai dapat diketahui dengan mengukur jarak \(F \) ke \(D \). Apakah cara tersebut tepat utuk menaksir lebar sungai? Jelaskan.

Penyelesaian:
Iya, tentu. Cara tersebut menggunakan konsep kekongruenan dua segitiga dalam gambar di atas yaitu \(\triangle ABC \) dan \(\triangle DFC \). Silakan dibuktikan.
Petunjuk: gunakan kriteria kekongruenan sudut-sisi-sudut
(gunakan titik sudut \(B, C \) dan \(F \) dan sisi \(BC \) dan \(FC \))
Bangun ruang sisi lengkung merupakan bangun ruang yang memiliki minimal satu sisi lengkung. Tong sampah, cone es krim, topi ulang tahun dan bola basket merupakan model bangun ruang sisi lengkung dalam kehidupan sehari-hari.

Kata Kunci
- Tabung
- Kerucut
- Bola
- Jaring-jaring
- Luas Permukaan
- Volume

Kompetensi Dasar
1.1 Menghargai dan menghayati ajaran agama yang dianutnya.
2.2 Memiliki rasa ingin tahu, percaya diri dan ketertarikan pada matematika serta memiliki rasa percaya pada daya dan kegunaan matematika, yang terbentuk melalui pengalaman belajar.
3.7 Menentukan luas selimut dan volume tabung, kerucut, dan bola.
3.8 Menaksir dan menghitung luas permukaan bangun datar dan bangun ruang yang tidak beraturan dengan menerapkan kombinasi geometri dasarnya.

Pengalaman Belajar
1. Mengenali bangun tabung, kerucut dan bola beserta unsur-unsurnya.
4. Menentukan hubungan antara luas alas dan tinggi dengan volume.
5. Mengidentifikasi volume tabung, kerucut dan bola.
Bangun Ruang Sisi Lengkung

Tabung
- Menentukan jaring-jaring tabung
- Menentukan luas permukaan dan volume tabung
 - Menyelesaikan permasalahan nyata yang berhubungan dengan bangun tabung

Kerucut
- Menentukan jaring-jaring kerucut
- Menentukan luas permukaan dan volume kerucut
 - Menyelesaikan permasalahan nyata yang berhubungan dengan bangun kerucut

Bola
- Menentukan luas permukaan dan volume bola
 - Menyelesaikan permasalahan nyata yang berhubungan dengan bangun bola

Salah satu kisah yang cukup terkenal adalah tentang bagaimana Archimedes menemukan metode yang digunakan untuk mengukur volume benda yang berbentuk tidak teratur. Cerita ini bermula ketika Archimedes diminta memeriksa mahkota baru Raja Hieron II. Archimedes diminta memeriksa apakah mahkota itu terbuat dari emas murni atau tidak. Archimedes diminta memeriksa keaslian mahkota tersebut tanpa merusaknya. Ia memikirkannya secara sungguh-sungguh. Setelah menerima tugas tersebut, ia mencoba menemukan dirinya ke dalam bak mandi yang penuh air, Archimedes mengamati bahwa ada air yang tumpah ke lantai. Saat ini juga ia menemukan jawabannya. Dari peristiwa tersebut Archimedes lantas menyimpulkan bahwa sebuah benda yang dicelupkan dalam air akan mendapatkan gaya apung yang sama besar dengan berat cairan yang dipindahkan. Dengan prinsip itu maka Archimedes menemukan bahwa mahkota raja dicampuri dengan perak. Prinsip ini lantas dikenal sebagai Hukum Archimedes.

Di bidang metematika, penemuan Archimedes yang cukup penting adalah besaran nilai \(\pi \) yang lebih akurat daripada nilai \(\pi \) yang telah ditemukan oleh ilmuwan sebelumnya. Penemuan lain Archimedes di bidang matematika adalah tentang bangun ruang sisi lengkung. Dalam karyanya yang berjudul “On Spheres and Cylinder”, ia menyatakan bahwa sebarang tabung yang memiliki jari-jari yang sama dengan jari-jari bola dan tingginya sama dengan diameter bola, maka luas permukaan tabung sama dengan \(\frac{3}{2} \) kali luas permukaan bola.

Sumber: www.edulens.org

Hikmah yang bisa diambil

1. Archimedes adalah orang yang mempunyai rasa ingin tahu yang sangat tinggi. Ia mencoba mencari penyebab pada tiap kejadian yang ada di sekitarnya. Hal ini dapat dilihat dari kisah saat ia diminta untuk memeriksa mahkota Raja Hieron II sampai akhirnya ia menemukan Hukum Archimedes.

2. Archimedes selalu berusaha untuk berinovasi dan menemukan sesuatu yang baru. Kita dapat perhatikan inovasi yang telah ia lakukan dalam penentuan besaran nilai \(\pi \) yang lebih akurat daripada nilai \(\pi \) yang telah ditemukan sebelumnya.

3. Peran matematika dalam kehidupan manusia sangat banyak, salah satunya adalah besaran nilai \(\pi \) yang dikemukakan Archimedes serta penemuan Archimedes dalam bukunya “On Spheres and Cylinder”.

Sumber: www.edulens.org
A. Tabung

Pertanyaan Penting

Tanyakan kepada siswa tentang pemahaman mereka mengenai tabung. Ajak siswa berpikir bagaimana untuk menghitung luas permukaan dan volume tabung. Bila diperlukan dapat menggunakan peraga berupa kaleng susu yang telah dibawa.

Pertanyaan Penting

Tahukah siswa bangun tabung? Tahukah siswa rumus untuk menghitung luas permukaan dan volume tabung?

Kerjakan beberapa kegiatan berikut agar siswa dapat mengetahui dan memahami jawaban pertanyaan-pertanyaan di atas.

Kegiatan 5.1 Membuat Jaring-jaring Tabung

Tujuan dari kegiatan ini adalah
3. Memberikan pemahaman kepada siswa bahwa untuk menghitung luas permukaan tabung dapat melalui menghitung luas jari-jaring tersebut.

Alat-alat yang diperlukan dapat disiapkan sekolah (jika memungkinkan) atau para siswa yang membawanya dari rumah. Para siswa dibagi menjadi kelompok dengan masing-masing kelompok beranggotakan 3-5 siswa.

Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 5.1.

Setelah mengetahui jaring-jaring tabung siswa diajak untuk mengamati bangun tabung agar dapat mengenal dan mendefinisikan unsur-unsur tabung.
Kegiatan 5.1 Membuat Jaring-jaring Tabung

Siapkan beberapa alat berikut:
1. Kaleng susu yang masih ada labelnya.
2. Alat tulis
3. Penggaris.
4. Kertas karton
5. Cutter atau gunting.

Kerjakan secara berkelompok (3-5 siswa).
1. Dengan menggunakan cutter dan penggaris, potong label kaleng susu secara vertikal (jangan sampai sobek). Didapatkan label yang berbentuk persegi panjang.
2. Gambarlah persegi panjang pada kertas karton yang sudah disiapkan sesuai ukuran persegi panjang yang diperoleh Langkah 1 dan tandai titik sudutnya dengan huruf A, B, C dan D.
3. Hitung panjang AB dan BC menggunakan penggaris. Panjang BC merupakan tinggi kaleng susu tersebut sedangkan panjang AB merupakan keliling dari lingkaran bawah (alas) dan lingkaran atas (tutup).
4. Hitung jari-jari lingkaran pada kaleng tersebut. Dari panjang AB siswa dapat menghitung jari-jari lingkaran, yakni dengan membagi panjang AB dengan 2\(\pi\).
5. Gambarlah dua buah lingkaran dengan jari-jari yang diperoleh dari Langkah 4. Kedua lingkaran tersebut menyenggung/menempel persegi panjang ABCD pada sisi AB dan CD.

Gambar 5.1 Tabung dan jaring-jaring tabung
Ayo Kita Amati

Ajak siswa mengamati bangun tabung agar dapat mengenal dan mendefinisikan unsur-unsur tabung.

Unsur-unsur tabung.

- Daerah lingkaran L_1 merupakan alas tabung dengan jari-jari r_1.
- Daerah lingkaran L_2 merupakan tutup tabung dengan jari-jari r_2.
- Daerah persegi panjang $ABCD$ merupakan selimut tabung.
- r_1 dan r_2 merupakan jari – jari tabung ($r_1 = r_2 = r$).
- Jarak titik pusat lingkaran L_1 dengan titik pusat lingkaran L_2 merupakan tinggi tabung (disimbolkan dengan t).
- Panjang $AB = CD = Keliling daerah lingkaran L_1 = Keliling daerah lingkaran L_2.
- Panjang $AD = BC = t$.
- Permukaan tabung terdiri atas dua daerah lingkaran dan sebuah daerah persegi.

Ayo Bertanya

Ajak siswa membuat beberapa pertanyaan mengenai unsur-unsur tabung. Diharapkan siswa semakin memahami tabung dan unsur-unsurnya.
Dari pengamatanmu terhadap unsur-unsur tabung buatlah beberapa pertanyaan.

Contoh:
1. Apakah jari-jari tabung selalu lebih pendek daripada tinggi tabung?
2. Bagaimana bentuk selimut tabung?

Kegiatan 5.2
Menendapatkan Rumus Luas Permukaan Tabung

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman mengenai luas permukaan tabung. Dari kegiatan ini diharapkan siswa bisa menyimpulkan bahwa luas permukaan tabung sama dengan luas jaring-jaring tabung.

Selain itu diharapkan pula siswa dapat mendapatkan rumus untuk menghitung luas permukaan tabung melalui Ayo Kita Simpulkan.

Siswa telah mengetahui jaring-jaring tabung melalui Kegiatan 5.1. Dengan menggunakan kalimatmu sendiri jawablah pertanyaan berikut?

1. Bagaimana bentuk muka atau sisi tabung? Berapa banyak sisi tabung tabung?
2. Apakah hubungan antara jaring-jaring tabung dengan luas permukaan tabung?

Permukaan tabung adalah bangun-bangun yang membatasi tabung tersebut. Berdasarkan Kegiatan 5.1 siswa sudah mengetahui bahwa permukaan tabung terdiri dari dua daerah lingkaran dan sebuah daerah persegi panjang. Luas permukaan tabung merupakan jumlah luas muka atau sisi-sisi tabung.

Ayo Kita Simpulkan

Ajak siswa untuk membuat kesimpulan berdasarkan Kegiatan 5.1 sampai dengan Kegiatan 5.2.

Ayo Kita Simpulkan

Gambar di samping merupakan jaring-jaring tabung dengan jari-jari r dan tinggi t. Karena luas permukaan tabung sama dengan luas jaring-jaring tabung maka:

\[
L = \text{Luas permukaan tabung} = 2 \times \text{Luas jaring-jaring tabung} = 2 \pi r^2 + 2 \pi rt = 2 \pi r(r + t)
\]

Kegiatan 5.3 Menentukan Volume Tabung Melalui Eksperimen

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman mengenai volume tabung. Dari kegiatan ini diharapkan siswa bisa menyimpulkan bahwa volume tabung diperoleh dari perkalian dari luas alas dengan tinggi tabung. Diharapkan siswa membawa uang koin dan penggaris (jika memungkinkan bisa disiapkan oleh sekolah).

Pada kegiatan ini tumpukan 12 koin dianggap sebagai tabung dengan tinggi 12 satuan. Sehingga volume tumpukan koin tersebut adalah $12 \times \text{luas uang koin}$.

Kegiatan 5.3 Menentukan Volume Tabung Melalui Eksperimen

Kumpulkan uang koin Rp500,00 sebanyak 12 buah. Kerjakan kegiatan ini dengan teman sebangkumu.
a. Ambil salah satu uang koin dan ukurlah diameternya. Hitunglah luas permukaan koin tersebut.

c. Berdasarkan butir b, tentukan rumus untuk menghitung volume tabung.

Kegiatan 5.4
Membandingkan Tabung Dengan Bangun Ruang Lainnya

Tujuan dari kegiatan ini adalah untuk membandingkan volume tabung dengan volume bangun ruang lainnya, yakni prisma, balok. Dari perbandingan tersebut diharapkan siswa mengetahui rumus volume tabung.

Kegiatan 5.4
Membandingkan Tabung Dengan Bangun Ruang Lainnya

Pada gambar di bawah ini terdapat prisma segitiga, balok dan tabung dengan tinggi yang sama.

a. Menurut siswa bagaimana hubungan antara prisma, balok dan tabung?

- Ketiga bangun tersebut memiliki tinggi yang sama.
- Alas dan tutup identik (sama).
- Rumus untuk menghitung volume sama, yakni
 \[V = \text{luas alas} \times \text{tinggi} \]

b. Tentukan rumus volume prisma dan balok.

Volume prisma = \(\frac{1}{2} \times \text{luas alas} \times \text{tinggi} \)

Volume balok = \(\text{luas alas} \times \text{tinggi} \)

\[= \frac{1}{2}abt \]
\[= plt \]

c. Dari jawaban butir a dan b siswa dapat mendapatkan rumus volume tabung.

Volume tabung = \(\text{luas alas} \times \text{tinggi} \)

\[= \pi r^2 \times t \]
Kegiatan 5.5 Membandingkan Volume Dua Tabung

Setelah mengetahui bahwa kedua volume tersebut adalah sama, siswa ajak untuk menjelaskan kenapa kedua tabung volumenya sama.

Kegiatan 5.5 Membandingkan Volume Dua Tabung

Siswa sudah mengetahui rumus volume tabung melalui Kegiatan 5.3 dan 5.4. Perhatikan dua tabung di samping.

a. Hanya dengan memperhatikan kedua tabung, manakah yang memiliki volume lebih besar?

b. Hitung volume kedua tabung, apakah tebakan siswa di pertanyaan bagian (a) benar?

Ayo Kita Simpulkan

Ajak siswa untuk membuat kesimpulan berdasarkan Kegiatan 5.3 sampai dengan Kegiatan 5.5.

Ayo Kita Simpulkan

a. **Gunakan kalimat siswa sendiri.** Bagaimana cara siswa menentukan volume tabung?

Volume tabung diperoleh dengan mengalikan luas alas dengan tinggi tabung tersebut.

b. Dari hasil (a) diperoleh bahwa volume tabung dengan jari-jari \(r \) dan tinggi \(t \) adalah

\[
V = \pi r^2 t
\]
Catatan:

Bilangan \(\pi \) sering dituliskan \(\pi = 3,14 \) atau \(\pi = \frac{22}{7} \), namun keduanya masih nilai pendekatan. Jika pada soal tidak diperintahkan menggunakan \(\pi = 3,14 \) atau \(\pi = \frac{22}{7} \) maka cukup gunakan \(\pi \) saja.

Materi Esensi
Tabung

Definisi:

Tabung adalah bangun ruang sisi lengkung yang dibentuk oleh dua buah lingkaran identik yang sejajar dan sebuah persegi panjang yang mengelilingi kedua lingkaran tersebut. Tabung memiliki tiga sisi yakni dua sisi datar dan satu sisi lengkung.

Benda-benda dalam kehidupan sehari-hari yang menyerupai tabung adalah tong sampah, kaleng susu, lilin dan pipa.

Luas Tabung:

Misalkan terdapat tabung dengan jari jari \(r \) dan tinggi \(t \), maka:

\[
L = \text{Luas jaring-jaring tabung} \\
= 2 \times \text{Luas Lingkaran} + \text{Luas } ABCD \\
= 2\pi r^2 + AB \times BC \\
= 2\pi r^2 + 2\pi r \times t \\
= 2\pi r(r + t)
\]

Ingat: panjang \(AB \) = Keliling lingkaran \\
panjang \(BC \) = tinggi tabung
Volume Tabung:

Volume tabung adalah hasil dari luas alas tabung dengan tinggi tabung atau dapat dirumuskan sebagai berikut:

\[
V = La \times t = \pi r^2 \times t
\]

Contoh 5.1

Menghitung Luas Permukaan Tabung

Pada Contoh 5.1, siswa diajak untuk menghitung luas permukaan tabung yang jari-jari dan tingginya sudah diketahui.

Contoh 5.1

Menghitung Luas Permukaan Tabung

Hitung luas permukaan tabung di samping.

Alternatif Penyelesaian:

Tabung di samping memiliki jari-jari \(r = 3 \) cm dan tinggi \(t = 7 \) cm, maka luas permukannya adalah

\[
L = 2\pi r(r + t)
= 2\pi \times 3 \times (3 + 7)
= 60\pi
\]

Jadi, luas permukaan tabung adalah \(60\pi \) \(\text{cm}^2 \).

Contoh 5.2

Menghitung Luas Permukaan Tabung

Pada Contoh 5.2, siswa diajak untuk menghitung jari-jari tabung ketika diketahui luas permukaan dan tingginya.
Contoh 5.2

Menghitung Jari-jari Tabung Jika Diketahui Luas

Hitung jari-jari tabung di samping.

Alternatif Penyelesaian:

Tabung di samping memiliki tinggi 8 cm dan luas 528 cm2.

Gunakan $\pi = \frac{22}{7}$.

$L = 2\pi r(r + t)$ rumus luas permukaan tabung

$528 = 2(\frac{22}{7})r(r + 8)$ substitusi nilai L dan t

$84 = r(r + 8)$ kedua ruas dikalikan dengan $\frac{7}{44}$

Selanjutnya perhatikan tabel di samping.

Diperoleh $r = 6$, sehingga jari-jari tabung adalah 6 cm.

Contoh 5.3

Menghitung Volume Tabung

Pada Contoh 5.3, siswa diajak untuk menghitung volume tabung yang jari-jari dan tingginya sudah diketahui.

Contoh 5.3

Menghitung Volume Tabung

Hitung volume tabung di samping.

Alternatif Penyelesaian:

Tabung di samping memiliki jari-jari $r = 2$ m dan tinggi $t = 6$ m.

$V = \pi r^2t$ rumus volume tabung

$= \pi (2)^2 \times 6$ substitusi nilai r dan t

$= 24\pi$

Jadi, volume tabung adalah 24π m3.
Contoh 5.4
Menghitung Tinggi Tabung Jika Diketahui Volume

Pada Contoh 5.4, siswa diajak untuk menghitung tinggi tabung jika diketahui volume dan jari-jarinya.

Hitung tinggi tabung di samping.

Alternatif Penyelesaian:
Diameter tabung adalah 10 cm, maka jari-jari tabung adalah \(r = 5 \) cm dan volumenya adalah \(300\pi \) cm\(^3\).

\[
V = \pi r^2 t
\]

r Rumus volume tabung

\[
300\pi = \pi (5)^2 \times t
\]

Substitusi nilai \(r \) dan \(t \)

\[
300\pi = 25\pi \times t
\]

\[
12 = t
\]
Kedua ruas dibagi dengan \(25\pi \)

Jadi, tinggi tabung adalah 12 cm.

Contoh 5.5
Menghitung Jari-jari Tabung Jika Diketahui Volume

Pada Contoh 5.5, siswa diajak untuk menghitung jari-jari tabung jika diketahui volume dan tingginya.

Hitung jari-jari tabung di samping.

Alternatif Penyelesaian:
Volume tabung di samping adalah \(600\pi \) m\(^3\) dan tinggi \(t = 10 \) m.

\[
V = \pi r^2 t
\]

Rumus volume tabung

\[
600\pi = \pi r^2 \times 10
\]

Substitusi nilai \(V \) dan \(t \)

\[
60 = r^2
\]
Kedua ruas dibagi dengan \(10\pi \)

\[
\sqrt{60} = r
\]

Jadi, jari-jari tabung adalah \(\sqrt{60} \) m.
Ayo Kita Tinjau Ulang

Pada bagian ini, siswa diajak untuk mengerjakan beberapa soal tambahan yang berdasarkan contoh – contoh sebelumnya namun dengan beberapa perubahan.

Pada soal 1, siswa akan diajak untuk menghitung luas permukaan tabung pada Contoh 5.1 namun jari-jarinya dijadikan dua kali lipat dan tingginya dijadikan ½ kali lipat (dan juga sebaliknya). Selanjutnya siswa diajak untuk apakah terjadi perubahan luas permukaan tabung.

Pada soal 2, siswa akan diajak untuk menghitung volume tabung pada Contoh 5.3 namun jari-jarinya dijadikan dua kali lipat dan tingginya dijadikan ½ kali lipat (dan juga sebaliknya). Selanjutnya siswa diajak untuk apakah terjadi perubahan luas permukaan tabung.

Penyelesaian:

1. Pada Contoh 5.1, jari-jarinya 3 cm dan tingginya 7 cm. Luas permukaan 60π cm2.
 a. Jari-jari menjadi dua kali lipat dan tinggi menjadi ½ kali lipat maka $r = 6$ cm dan $t = 3,5$ cm.
\[L = 2\pi r(r + t) \]
\[= 2\pi(6)(6 + 3,5) \]
\[= 114\pi \text{ cm}^2 \]

b. Jari-jari menjadi \(\frac{1}{2}\) kali lipat dan tinggi menjadi 2 kali lipat maka \(r = 1,5 \text{ cm}\) dan \(t = 14 \text{ cm}\).
\[L = 2\pi r(r + t) \]
\[= 2\pi(1,5)(1,5 + 14) \]
\[= 46,5\pi \text{ cm}^2 \]

c. Jika jari-jari dijadikan dua kali lipat dan tinggi menjadi \(\frac{1}{2}\) kali lipat atauupn sebaliknya maka akan terjadi perubahan luas permukaan.

2. Pada Contoh 5.3, jari-jarinya 2 m dan tingginya 6 m. Volume 24\(\pi \text{ m}^3\).

a. Jari-jari menjadi dua kali lipat dan tinggi menjadi \(\frac{1}{2}\) kali lipat maka \(r = 4 \text{ m}\) dan \(t = 3 \text{ m}\).
\[V = \pi r^2 t \]
\[= \pi(4)^2(3) \]
\[= 48\pi \text{ m}^3 \]

b. Jari-jari menjadi \(\frac{1}{2}\) kali lipat dan tinggi menjadi 2 kali lipat maka \(r = 1 \text{ m}\) dan \(t = 12 \text{ m}\).
\[V = \pi r^2 t \]
\[= \pi(1)^2(12) \]
\[= 12\pi \text{ m}^3 \]

c. Jika jari-jari dijadikan dua kali lipat dan tinggi menjadi \(\frac{1}{2}\) kali lipat atauupn sebaliknya maka akan terjadi perubahan volume.

Latihan 5.1

Tabung

1. Hitung luas permukaan dan volume dari bangun tabung berikut ini:

 ![Diagram Tabung](image)

 a.
 b.
 c.
Penyelesaian:

Gunakan rumus luas permukaan dan volume tabung. Jika diketahui diameter ubah menjadi jari-jari.

a. Luas = $112\pi \text{ cm}^2$
 Volume = $160\pi \text{ cm}^3$

b. Luas = $182\pi \text{ cm}^2$
 Volume = $294\pi \text{ cm}^3$

c. Luas = $56\pi \text{ cm}^2$
 Volume = $48\pi \text{ cm}^3$

d. Luas = $18\pi \text{ m}^2$
 Volume = $8\pi \text{ m}^3$

e. Luas = $24\pi \text{ m}^2$
 Volume = $40\pi \text{ m}^3$

f. Luas = $164,5\pi \text{ dm}^2$
 Volume = $245\pi \text{ dm}^3$

2. Tentukan panjang dari unsur tabung yang ditanyakan

Ket: $V = \text{volume tabung}, L = \text{luas permukaan tabung}, r = \text{jari-jari tabung},

 $t = \text{tinggi tabung}$.
Penyelesaian:
Gunakan rumus luas permukaan dan volume tabung. Jika diketahui diameter ubah menjadi jari-jari.

a. \(t = 6 \text{ cm} \)
 d. \(r = 11 \text{ cm} \)

b. \(t = 7 \text{ cm} \)
 e. \(t = 15 \text{ cm} \)

c. \(t = 14 \text{ m} \)
 f. \(t = 7 \text{ m} \)

3. **Berpikir Kritis.** Terdapat suatu tabung dengan jari-jari \(r \) cm dan tinggi tabung \(t \) cm, dimana \(r < t \). Misalkan tabung tersebut memiliki volume \(V \text{ cm}^3 \) dan luas permukaan \(L \text{ cm}^2 \). Apakah mungkin \(V = L \)?

Jika ya, tentukan nilai \(\frac{1}{r} + \frac{1}{t} \).

Penyelesaian:
Rumus luas permukaan tabung = \(2\pi(r + t) \)

Rumus volume tabung = \(\pi r^2 t \)

Diperoleh
\[
2\pi(r + t) = \pi r^2 t
\]
\[
2(r + t) = rt
\]
\[
\frac{r+t}{rt} = \frac{1}{2}
\]
\[
\frac{1}{r} + \frac{1}{t} = \frac{1}{2}
\]

4. **Tantangan.** Gambar disamping merupakan suatu magnet silinder. Alas dari magnet tersebut dibentuk dari dua lingkaran yang sepusat. Lingkaran yang lebih kecil memiliki jari-jari \(r_1 = 4 \text{ cm} \), sedangkan lingkaran yang lebih besar memiliki jari-jari \(r_2 = 6 \text{ cm} \). Tinggi dari magnet adalah \(t = 10 \text{ cm} \).

Tentukan:
 a. Luas permukaan magnet.
 b. Volume magnet.

Penyelesaian:

a. Luas permukaan = \(2 \times \) luas alas + luas selimut dalam + luas selimut luar
 \[
 = 2(\pi r_2^2 - \pi r_1^2) + 2\pi r_1 t + 2\pi r_2 t
 \]
 \[
 = 2(\pi(6)^2 - \pi(4)^2) + 2\pi(4)(10) + 2\pi(6)(10)
 \]
b. Volume = volume tabung besar – volume tabung kecil
 \[V = \pi(r_2)^2t - \pi(r_1)^2t = \pi(6)^2(10) - \pi(4)^2(10) = 200\pi \]

5. **Irisan Tabung.** Misalkan terdapat suatu tabung dengan jari-jari \(r \) cm dan panjang \(t \) cm. Kemudian tabung tersebut dijadikan irisan tabung dengan memotong tabung tersebut menjadi dua bagian yang sama persis dari atas ke bawah. Tentukan rumus untuk menghitung luas irisan tabung tersebut.

 Penyelesaian:

 Petunjuk: Hitung semua luas permukanya.

 \[V = \pi r(r + t) + 2rt \]

6. **Tandon Bocor.** Terdapat suatu tandon yang berbentuk tabung dengan jari-jari 50 cm tinggi 2 m. Tandon tersebut berisi air sebanyak \(\frac{3}{4} \) dari volume total. Terdapat lubang kecil di dasar tendon tersebut yang menyebabkan air mengalir keluar dengan kecepatan 50 cm\(^3\)/detik. Air pada tandon tersebut akan habis setelah ... detik? (anggap \(\pi = 3.14 \)).

 Penyelesaian:

 Volume air = \(\frac{3}{4}\pi(50)^3(200) = \frac{3}{4}(3.14)(50)^2(200) \)

 Waktu yang dibutuhkan = \(\frac{\text{Volume}}{\text{Kecepatan}} = \frac{3(3.14)(50)^2(200)}{4(500)} = 2.355 \) detik

7. **Pondasi rumah.** Alas dari pondasi rumah pak Ahmad berbentuk seperti gambar di samping. Jika tinggi pondasi adalah 2 m maka:

 a. Tentukan luas permukaan pondasi.

 b. Tentukan volume pondasi.

 Penyelesaian:

 Petunjuk: Hitung terlebih dahulu luas dari alas pondasi tersebut.

 a. Luas = \((1.800 - 10\pi) \) cm\(^2\)

 b. Volume = \((1.800 - 50\pi) \) cm\(^3\)

8. **Analisis Kesalahan.** Rudi menghitung volume tabung dengan diameter 5 cm dan tinggi 12 cm. Rudi menghitung
\[V = (12)^2 (5) = 720 \]

Sehingga diperoleh volume tabung adalah 720 cm\(^3\). Tentukan kesalahan yang dilakukan Budi.

Penyelesaian:

Budi salah menggunakan rumus, seharusnya \(V = \pi r^2 t \). Selain itu Budi tertukar ketika mensubstitusikan nilai \(r \) dan \(t \).

9. **Tabung miring.** Pada gambar di bawah terdapat dua buah bangun sisi lengkung. Sebelah kiri merupakan tabung dengan jari-jari \(r \) dan tinggi \(t \). Sebelah kanan merupakan bangun ruang sisi lengkung yang diperoleh dari tabung sebelah kiri dengan menggeser tutup ke sebelah kanan, selanjutnya disebut **dengan tabung miring**. Tabung miring tersebut memiliki jari-jari \(r \) dan tinggi \(t \).

\[\text{Diagram} \]

a. Tentukan suatu metode untuk mendapatkan rumus dari volume tabung miring tersebut.

Penyelesaian:
a. Salah satu metode adalah dengan membuat tumpukan koin yang membentuk tabung miring.

a. Sama, karena kaidah volume adalah luas alas dikalikan dengan tinggi. Dengan merubah kerucut menjadi kerucut miring tidak merubah alas dan tingginya, sehingga tidak terjadi perubahan volume.

10. **Kaleng susu.** Suatu perusahaan susu memiliki kotak susu ukuran 40 cm \(\times \) 60 cm \(\times \) 20 cm. Kapasitas maksimal kotak tersebut adalah 48 kaleng susu. Jari-jari kaleng susu adalah \(r \) cm dan tingginya \(t \) cm. Perusahaan tersebut membuat peraturan:

 i. Nilai \(r \) dan \(t \) harus bilangan bulat.

 ii. Luas permukaan kaleng tersebut harus seminimal mungkin.

 Tentukan nilai \(r \) dan \(t \).
Penyelesaian:
Perhatikan gambar di bawah ini.

Gambar di atas merupakan alas kotak susu dengan ukuran 40 cm × 60 cm, tiap-tiap persegi kecil berukuran 10 cm × 10 cm. Siswa dapat membuat lingkaran dengan jari-jari 5 cm (warna biru) atau dengan jari-jari 10 cm (warna merah).

- Ketika \(r = 5 \) cm, diperoleh 24 lingkaran. Karena kapasitas kotak tersebut adalah 48 kaleng susu, maka tinggi kaleng susu adalah \(t = 20 \times \left(\frac{24}{48} \right) = 10 \).

Diperoleh luas permukaan kaleng = \(2\pi r(r + t) = 2\pi(5)(5 + 10) = 150\pi \)

- Ketika \(r = 10 \) cm, diperoleh 12 lingkaran. Karena kapasitas kotak tersebut adalah 48 kaleng susu, maka tinggi kaleng susu adalah \(t = 20 \times \left(\frac{12}{48} \right) = 5 \).

Diperoleh luas permukkan kaleng = \(2\pi r(r + t) = 2\pi(10)(10 + 4) = 300\pi \)

Luas permukaannya minimal saat \(r = 5 \) cm, \(t = 10 \) cm.

B. Kerucut

Pertanyaan Penting

Tanyakan kepada siswa tentang pemahaman mereka mengenai kerucut. Ajak siswa untuk berpikir mengenai “Bagaimana menghitung luas permukaan dan volume kerucut?”. Bila diperlukan dapat menggunakan peraga topi ulang tahun yang telah dibawa.
Pertanyaan Penting

Tahukah siswa rumus untuk menghitung luas permukaan dan volume kerucut? Kerjakan beberapa Kegiatan 5.6 berikut agar siswa dapat mengetahui dan memahami jawaban pertanyaan di atas.

Kegiatan 5.6 Membuat Jaring-jaring Kerucut

Tujuan dari kegiatan ini adalah
1. Untuk memberikan pemahaman mengenai jaring-jaring kerucut.
3. Memberikan pemahaman kepada siswa bahwa untuk menghitung luas permukaan kerucut dapat melalui menghitung luas jari-jaring tersebut.

Alat-alat yang diperlukan dapat disiapkan sekolah (jika memungkinkan) atau para siswa yang membawanya dari rumah. Para siswa dibagi menjadi kelompok dengan masing-masing kelompok beranggotakan 3-5 siswa.

Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 5.6.

Setelah mengetahui jaring-jaring tabung siswa diajak untuk mengamati bangun kerucut agar dapat mengenai dan mendefinisikan unsur-unsur kerucut.

Kegiatan 5.6 Membuat Jaring-jaring Kerucut

Siapkan beberapa alat berikut:
1. Topi berbentuk kerucut.
2. Alat tulis dan spidol merah.
3. Penggaris.

Langkah – langkah dalam Kegiatan 5.6:
1. Buat garis lurus vertikal dari titik puncak dengan menggunakan spidol merah.
2. Dengan menggunakan gunting, potong topi sesuai garis merah.
3. Dari Langkah 2, diperoleh bangun yang berbentuk juring.
4. Gambarlah/jiplak juring (yang diperoleh dari Langkah 3) pada kertas karton kemudian tandai titik puncak dengan huruf A, titik – titik ujung busurnya dengan titik B dan C.
5. Panjang busur $BC = \text{keliling alas kerucut}$. Sehingga dapat diperoleh jari – jari kerucut, yaitu $r = \frac{BC}{2\pi}$.

7. Gunting gambar yang diperoleh dari Langkah 6. Apakah dari gambar yang telah digunting siswa dapat membuat kerucut?

![Gambar 5.3 Kerucut dan jaring–jaring kerucut](image)

Ayo Kita Amati

Ajak siswa mengamati bangun kerucut agar dapat mengenal dan mendefinisikan unsur-unsur kerucut.

Ayo Kita Amati

Unsur-unsur dari kerucut.

![Unsur-unsur dari kerucut](image)
Daerah lingkaran L merupakan alas kerucut.
Juring ABC merupakan selimut kerucut.
Titik A merupakan titik puncak kerucut.
r merupakan jari-jari kerucut.
t merupakan tinggi kerucut.
Panjang busur BC sama dengan keliling lingkaran dengan jari-jari r.
AB dan AC disebut garis lukis kerucut.
$AB = AC = s$, dimana $s^2 = r^2 + t^2$ (ingat Teorema Phytagoras).

Ayo Silakan Bertanya

Ajak siswa membuat beberapa pertanyaan mengenai unsur-unsur kerucut. Diharapkan siswa semakin memahami kerucut dan unsur-unsurnya.

Dari pengamatanmu terhadap unsur-unsur kerucut buatlah beberapa pertanyaan.
Contoh:
1. Apakah jari-jari kerucut selalu lebih pendek daripada tinggi kerucut?
2. Bagaimana bentuk selimut kerucut?

Diskusi

Ajak siswa untuk berdiskusi dengan teman sebangkunya, kemudian minta mereka berdiskusi jaring-jaring kerucut dan luas jaring-jaring kerucut. Tujuannya adalah siswa dapat menemukan suatu cara untuk menghitung luas jaring-jaring kerucut.

Siswa sudah mengetahui jaring-jaring kerucut melalui Kegiatan 5.6. Diskusikan pertanyaan berikut bersama teman sebangkumu.
1. Apakah untuk menghitung luas permukaan permukaan tabung dapat melalui menghitung luas jaring-jaring kerucut.

2. Bagaimana caranya menghitung luas jaring-jaring kerucut?
 Sama seperti menghitung luas permukaan tabung, untuk menghitung luas permukaan kerucut dapat dilakukan dengan menghitung luas dari jaring-jaring kerucut. Jaring-jaring kerucut terdiri atas sebuah lingkaran dan sebuah juring (lihat Gambar 5.3). Maka luas permukaan kerucut adalah luas lingkaran L ditambah dengan luas juring ABC.

 Siswa pasti sudah bisa menghitung luas lingkaran L karena jari-jarinya sudah diketahui, namun bagaimana menghitung luas juring ABC jika yang diketahui adalah panjang busur BC dan panjang AB? Kerjakan Kegiatan 5.7 untuk mendapatkan luas juring ABC pada jaring-jaring kerucut.

Kegiatan 5.7 Menentukan Luas Selimut Kerucut

Tujuan dari kegiatan ini adalah untuk membantu siswa mendapatkan luas selimut kerucut.

Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 5.7.

Kerjakan kegiatan ini secara individu.
Perhatikan gambar di samping. Diketahui panjang $AB = \text{panjang } AC = s$, serta panjang $BC = 2\pi r$. Ingat bahwa juring ABC merupakan bagian dari lingkaran dengan jari-jari s. Kita beri nama dengan lingkaran S.

1. Ingatkah siswa mengenai perbandingan antara luas juring dengan luas lingkaran?
 Jika diketahui $\angle BAC$ maka
 \[
 \frac{\text{Luas Juring } ABC}{\text{Luas Lingkaran } S} = \frac{m\angle ABC}{...}
 \]
 Namun sudut $\angle BAC$ tidak diketahui, maka diperlukan analisis lebih lanjut.

2. Ingatkah siswa mengenai perbandingan antara panjang busur dengan keliling lingkaran?
 \[
 \frac{BC}{\text{Keliling Lingkaran } S} = \frac{m\angle ABC}{...}
 \]
Namun diketahui \(BC = 2\pi r \), sehingga
\[
\frac{2\pi r}{\text{Keliling Lingkaran } S} = \frac{m \angle ABC}{...}
\]

3. Dari hasil (1) dan (2) diperoleh
\[
\frac{\text{Luas Juring } ABC}{\text{Luas Lingkaran } S} = \frac{2\pi r}{\text{Keliling Lingkaran } S}
\]
Sehingga,
\[
\text{Luas Juring } ABC = \frac{2\pi r}{2\pi s} \times \text{Luas Lingkaran } S
\]
Dengan mensubstitusi luas lingkaran \(S = \pi s^2 \) dan keliling lingkaran \(S = 2\pi s \), diperoleh
\[
\text{Luas Juring } ABC = \frac{2\pi r}{2\pi s} \times \pi s^2
\]
\[
= \pi rs
\]

Ayo Kita Simpulkan

Ajak siswa untuk membuat kesimpulan berdasarkan Kegiatan 5.6 sampai dengan Kegiatan 5.7.

Ayo Kita Simpulkan

Gambar di samping merupakan jaring-jaring kerucut dengan jari-jari \(r \) dan tinggi \(t \). Karena luas permukaan kerucut ekuivalen dengan luas jaring-jaring kerucut maka:

\[
\text{Luas Permukaan Kerucut} = \text{Luas Lingkaran } L + \text{Luas Juring } ABC
\]
\[
= ... + ...
\]
\[
= ...
\]
Kegiatan 5.8 Menentukan Volume Kerucut Melalui Eksperimen

Tujuan dari kegiatan ini adalah membantu siswa untuk mendapatkan volume kerucut melalui eksperimen. Dari kegiatan ini diharapkan siswa bisa menyimpulkan bahwa

Jika terdapat tabung dan kerucut dengan jari-jari dan tinggi yang sama maka volume tabung adalah 3 kali volume kerucut.

Alat-alat yang diperlukan dapat disiapkan sekolah (jika memungkinkan) atau para siswa yang membawanya dari rumah. Para siswa dibagi menjadi kelompok dengan masing-masing kelompok beranggotakan 3-5 siswa. Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 5.8.

Kegiatan 5.8 Menentukan Volume Kerucut Melalui Eksperimen

Kerjakan kegiatan ini secara kelompok.

Siapkan beberapa alat perikut:
1. Kertas karton
2. Gunting
3. Beras atau pasir
4. Double tape.

Langkah-langkah dari Kegiatan 5.8 adalah sebagai berikut:

b. Isi kerucut dengan beras atau pasir sampai penuh kemudian pindahkan semuanya ke tabung. Ulangi langkah ini sampai tabung terisi penuh.

c. Berapa kali siswa mengisi tabung sampai penuh dengan menggunakan kerucut?

d. Gunakan hasil d untuk menentukan hubungan antara volume tabung dan volume kerucut.

e. Tentukan perbandingan volume kerucut dengan volume tabung.

f. Dari jawaban butir e, dapat disimpulkan

\[
\text{Volume kerucut} = \frac{1}{3} \text{Volume tabung}
\]
Kegiatan 5.9 Membandingkan Kerucut dengan Limas

Tujuan dari kegiatan ini adalah untuk membandingkan volume kerucut dengan volume bangun ruang lainnya, yakni limas segitiga dan limas segiempat. Dari perbandingan tersebut diharapkan siswa mengetahui rumus volume tabung.

Kegiatan 5.9 Membandingkan Kerucut dengan Limas

Pada gambar di bawah ini terdapat limas segitiga, limas segiempat, dan kerucut dengan tinggi yang sama.

a. Menurut siswa apakah kesamaan antara limas segitiga, limas segiempat dan kerucut?

- Ketiga bangun tersebut memiliki tinggi yang sama.
- Rumus untuk menghitung volume sama, yakni

\[V = \frac{1}{3} \text{luas alas} \times \text{tinggi} \]

b. Tentukan rumus volume limas segiempat

Limas di samping memiliki alas segiempat dengan panjang sisi \(b \) serta tinggi \(t \).

Volume limas \(= \frac{1}{3} \text{luas alas} \times \text{tinggi} \)

\[= \frac{1}{3} b^2 t \]
c. Dari hasil (a) dan (b) siswa dapat menentukan rumus volume kerucut. Limas di samping memiliki alas lingkaran dengan jari-jari \(r \) serta tinggi \(t \).

Volume limas = \(\frac{1}{3} \) luas alas \(\times \) tinggi

\[
= \frac{1}{3} \pi r^2 t
\]

Ayo Kita Simpulkan

Ajak siswa untuk membuat kesimpulan berdasarkan Kegiatan 5.8 sampai dengan Kegiatan 5.9.

Ayo Kita Simpulkan

a. **Gunakan kalimat siswa sendiri.** Bagaimana caramu menentukan volume kerucut?

Volume kerucut diperoleh dengan mengalikan \(\frac{1}{3} \) luas alas dengan tinggi kerucut tersebut.

b. Dari Kegiatan 5.8 dan 5.9 diperoleh bahwa rumus volume kerucut dengan jari-jari dan tinggi \(t \) adalah

\[
V = \frac{1}{3} \pi r^2 t
\]

Materi Esensi

Kerucut

Definisi Kerucut:

Benda-benda dalam kehidupan sehari-hari yang menyerupai kerucut adalah topi ulang tahun, topi petani dan \(\textit{cone} \) es krim.
Luas Permukaan Kerucut:

Misalkan terdapat tabung dengan jari jari r dan tinggi t, maka:

\[L = \text{Luas Lingkaran} + \text{Luas Juring} ABC \]
\[= \pi r^2 + \pi rs \]
\[= \pi r(r + s) \]
\[= \pi r \left(r + \sqrt{r^2 + t^2} \right), s = \sqrt{r^2 + t^2} \]

Volume Kerucut:

Volume kerucut adalah \(\frac{1}{3} \) bagian dari volume tabung dengan jari-jari dan tinggi yang sama atau dapat dirumuskan sebagai berikut:

\[V = \frac{1}{3} \text{La} \times t \]
\[= \frac{1}{3} \pi r^2 \times t \]

\[\text{Luas alas} = \text{La} \]

Contoh 5.6

Menghitung Luas Permukaan Kerucut

Pada Contoh 5.6, siswa diajak untuk menghitung luas permukaan kerucut yang jari-jari dan tingginya sudah diketahui.

Contoh 5.6

Menghitung Luas Permukaan Kerucut

Hitung luas permukaan kerucut di samping.
Diameter kerucut adalah 16 cm, maka jari-jari kerucut adalah $r = 8$ cm, sedangkan tinggi kerucut adalah $t = 15$ cm. Panjang garis lukis adalah
Sehingga diperoleh

\[L = \pi r(r + s) \]
rumus luas permukaan tabung

\[= \pi (8)(8 + 17) \]
substitusi nilai \(r \) dan \(t \)

\[= 200\pi \]

Jadi, luas permukaan kerucut adalah 200\(\pi \) cm\(^2\).

<table>
<thead>
<tr>
<th>Contoh 5.7</th>
<th>Menghitung Jari-jari Kerucut Jika Diketahui Luas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pada Contoh 5.7, siswa diajak untuk menghitung jari-jari kerucut ketika diketahui luas permukaan dan garis lukis.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contoh 5.7</th>
<th>Menghitung Jari-jari Kerucut Jika Diketahui Luas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitung jari-jari kerucut di samping.</td>
<td></td>
</tr>
<tr>
<td>Panjang garis lukis adalah (s = 12) m dan luas permukaan kerucut adalah (L = 90\pi) m(^2).</td>
<td></td>
</tr>
</tbody>
</table>
| \(L = \pi r(r + s) \)
rumus luas permukaan tabung |
| \(90\pi = \pi r(r + 13) \)
substitusi nilai \(L \) dan \(s \) |
| \(90 = r(r + 13) \)
kedua ruas dibagi dengan \(\pi \) |

Perhatikan tabel di samping.

\[
\begin{align*}
90 &= 1 \times 90 = 5 \times 18 \\
&= 2 \times 45 = 6 \times 15 \\
&= 3 \times 30 = 9 \times 10
\end{align*}
\]

Diperoleh \(r = 5 \), sehingga jari-jari kerucut adalah 5 m.

<table>
<thead>
<tr>
<th>Contoh 5.8</th>
<th>Menghitung Tinggi Kerucut Jika Diketahui Luas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pada Contoh 5.8, siswa diajak untuk menghitung (t) kerucut ketika diketahui luas permukaan dan garis lukis.</td>
<td></td>
</tr>
</tbody>
</table>
Contoh 5.8

Menghitung Tinggi Kerucut Jika Diketahui Luas

Hitung tinggi kerucut di samping.

Jari-jari kerucut adalah \(r = 12 \text{ dm} \) dan luasnya adalah \(L = 300 \text{ dm}^2 \).

\[
L = \pi r(r + s) \quad \text{rumus luas permukaan tabung}
\]

\[
300\pi = \pi(12)(12 + s) \quad \text{substitusi nilai } L \text{ dan } r
\]

\[
25 = (12 + s) \quad \text{kedua ruas dibagi dengan } 25\pi
\]

\[
13 = s
\]

Kemudian berdasarkan teorema phytagoras

\[
t = \sqrt{s^2 - r^2} = \sqrt{13^2 - 12^2} = \sqrt{25} = 5
\]

Diperoleh \(t = 5 \), sehingga tinggi kerucut adalah 5 dm.

Contoh 5.9

Menghitung Tinggi Kerucut Jika Diketahui Luas

Pada Contoh 5.9, siswa diajak untuk menghitung volume kerucut ketika jari-jari dan tingginya sudah diketahui.

Contoh 5.9

Menghitung Tinggi Kerucut Jika Diketahui Luas

Hitung volume kerucut di samping.

Diameter kerucut adalah 24 cm, maka jari-jari kerucut adalah \(r = 12 \text{ cm} \). Sedangkan panjang garis lukis adalah \(s = 20 \text{ cm} \), maka

\[
t = \sqrt{20^2 - 12^2} = \sqrt{400 - 144} = \sqrt{256} = 16
\]

Sehingga volumenya adalah

\[
V = \frac{1}{3} \pi r^2 t \quad \text{rumus luas permukaan tabung}
\]

\[
= \frac{1}{3} \pi (12)^2 \times 16 \quad \text{substitusi nilai } r \text{ dan } t
\]

\[
= 768\pi
\]

Volume dari kerucut adalah 768\(\pi \) m\(^3\).
Contoh 5.10
Menghitung Jari-jari Kerucut Jika Diketahui Volume

Pada Contoh 5.10, siswa diajak untuk menghitung jari-jari kerucut jika diketahui volume dan tingginya.

Contoh 5.10
Menghitung Jari-jari Kerucut Jika Diketahui Volume

Hitung jari-jari kerucut di samping. Tinggi kerucut adalah \(t = 12 \text{ cm} \) dan volumenya adalah \(V = 196 \pi \text{ m}^3 \).

\[
V = \frac{1}{3} \pi r^2 t \quad \text{rumus luas permukaan kerucut}
\]

\[
196 \pi = \frac{1}{3} \pi r^2 \times 12 \quad \text{substitusi nilai } r \text{ dan } t
\]

\[
196\pi = 4\pi r^2
\]

\[
49 = r^2 \quad \text{kedua ruas dibagi dengan } 4\pi
\]

\[
7 = r
\]

Jari-jari kerucut adalah 7 m.

Ayo Kita Tinjau Ulang

Pada bagian ini, siswa diajak untuk mengerjakan beberapa soal tambahan yang berdasarkan Contoh – Contoh sebelumnya namun dengan beberapa perubahan.

Pada soal 1, siswa akan diajak untuk menghitung luas permukaan tabung pada Contoh 5.6 namun jari-jarinya dijadikan \(\frac{1}{2} \) kali lipat dan tingginya dijadikan 2 kali lipat. Selanjutnya siswa diajak untuk apakah terjadi perubahan luas permukaan tabung.

Pada soal 2, siswa akan diajak untuk menghitung volume tabung pada Contoh 5.9 namun jari-jarinya dijadikan dua kali lipat dan tingginya dijadikan \(\frac{1}{2} \) kali lipat (dan juga sebaliknya). Selanjutnya siswa diajak untuk apakah terjadi perubahan luas permukaan tabung.

Ayo Kita Tinjau Ulang

1. Perhatikan kembali soal pada Contoh 5.6. Jika jari-jari dijadikan menjadi \(\frac{1}{2} \) kali lipat dan tinggi dijadikan dua kali lipat, berapakah luas permukaan kerucut ? Apakah luas permukaannya semakin besar ?
2. Perhatikan kembali soal pada Contoh 5.9,
 a. Jika jari-jari dijadikan menjadi dua kali lipat dan tinggi dijadikan \(\frac{1}{2} \) kali lipat, berapakah volume kerucut?
 b. Jika jari-jari dijadikan menjadi \(\frac{1}{2} \) kali lipat dan tinggi dijadikan dua kali lipat, berapakah volume kerucut?
 c. Dari soal 2.a, 2.b apakah terjadi perubahan volume kerucut?
 Jelaskan analisismu.

Penyelesaian:
1. Pada Contoh 5.6, jari-jarinya 8 cm dan tingginya 15 cm. Luas permukaannya \(200\pi \) cm\(^2\). Jari-jari menjadi dua kali lipat dan tinggi menjadi \(\frac{1}{2} \) kali lipat maka \(r = 4 \) cm dan \(t = 30 \) cm.
 \[
 s = \sqrt{r^2 + t^2} = \sqrt{4^2 + 30^2} = \sqrt{916}
 \]
 \[
 L = \pi r(r + s)
 = \pi(4)(4 + \sqrt{916})
 = (16 + 4\sqrt{916})\pi \text{ cm}^2
 \]
 Luas permukanya semakin kecil.

2. Pada Contoh 5.9, jari-jarinya 12 cm dan tingginya 16 cm. Volume \(768\pi \) cm\(^3\).
 a. Jari-jari menjadi dua kali lipat dan tinggi menjadi \(\frac{1}{2} \) kali lipat maka \(r = 24 \) cm dan \(t = 8 \) m.
 \[
 V = \frac{1}{3}\pi r^2 t
 = \frac{1}{3}\pi(24)^2(8)
 = 1536\pi \text{ cm}^3
 \]
 b. Jari-jari menjadi \(\frac{1}{2} \) kali lipat dan tinggi menjadi 2 kali lipat maka \(r = 6 \) cm dan \(t = 32 \) cm.
 \[
 V = \frac{1}{3}\pi r^2 t
 = \frac{1}{3}\pi(6)^2(32)
 = 384 \text{ cm}^3
 \]
 Jika jari-jari dijadikan dua kali lipat dan tinggi menjadi \(\frac{1}{2} \) kali lipat ataupun sebaliknya maka akan terjadi perubahan luas permukaan.
1. Tentukan luas permukaan dan volume dari bangun tabung berikut:

- a. [Diagram]
- b. [Diagram]
- c. [Diagram]
- d. [Diagram]
- e. [Diagram]
- f. [Diagram]

Penyelesaian:

Gunakan rumus luas permukaan dan volume kerucut

- a. luas = 16(1 + \sqrt{10}) \pi \text{ cm}^2
 volume = 64\pi \text{ cm}^3

- b. luas = 96\pi \text{ cm}^2
 volume = 96\pi \text{ cm}^3

- c. luas = 12(3 + \sqrt{34}) \pi \text{ cm}^2
 volume = 120\pi \text{ cm}^3

- d. luas = 224\pi \text{ cm}^2
 volume = 392\pi \text{ cm}^3

- e. luas = \sqrt{7} (\sqrt{7} + 4) \pi \text{ cm}^2
 volume = 7\pi \text{ cm}^3

- f. luas = 90\pi \text{ cm}^2
 volume = 100\pi \text{ cm}^3
2. Tentukan panjang dari unsur kerucut yang ditanyakan.

 a. \(V = 300\pi \text{ m}^3 \)

 b. \(V = 120\pi \text{ m}^2 \)

 c. \(L = 180\pi \text{ cm}^2 \)

 d. \(r = ? \)

 e. \(L = 225\pi \text{ cm}^2 \)

 f. \(V = 150\pi \text{ cm}^3 \)

\[t = 10 \text{ m} \]

\[t = 16 \text{ cm} \]

\[t = ? \]

\[t = 15 \text{ cm} \]

\[t = ? \]

\[t = ? \]

Penyelesaian:

Gunakan rumus luas permukaan dan volume kerucut. Jika diketahui diameter ubah menjadi jari-jari.

\[t = 9 \text{ m} \quad r = 9 \text{ dm} \]

\[r = 6 \text{ m} \quad t = \sqrt{175} \text{ cm} \]

\[t = 6 \text{ cm} \quad t = 8 \text{ cm} \]

3. Tumpeng. Pada suatu hari Pak Budi melakukan syukuran rumah baru. Pak Budi memesan suatu tumpeng. Tumpeng tersebut memiliki diameter 36 cm dan tinggi 24 cm. Namun, diawal acara Pak Budi memotong bagian atas tumpeng tersebut secara mendatar setinggi 8 cm.

Berapakah luas permukaan dan volume dari tumpeng yang tersisa?

Penyelesaian:

Petunjuk: Bagian atas tumpeng yang dipotong juga berbentuk kerucut.

Berdasarkan kesebangunan: \(\frac{d_2}{d} = \frac{8}{24} = 12 \)
Diketahui: $t_1 = 24 \text{ cm}$, $t_2 = 8 \text{ cm}$, $d_1 = 36 \text{ cm}$

Luas permukaan = luas alas tumpeng + luas alas potongan + luas selimut tumpeng - luas selimut potongan

$$S_{\text{luas permukaan}} = \pi (18)^2 + \pi (6)^2 + \pi (18)(18 + 30) - \pi (6)(6 + 10)$$

$$= 324\pi + 36\pi + 864\pi - 96\pi$$

$$= 1.128\pi \text{ cm}^2$$

Volume sisa = volume tumpeng - volume potongan

$$= \frac{1}{3} \pi (18)^2 \times (24) - \frac{1}{3} \pi (6)^2 \times 8 = 2592\pi - 96\pi = 2.496\pi \text{ cm}^3$$

4. Suatu kerucut memiliki jari-jari 6 cm dan tinggi t cm. Jika luas permukaan kerucut adalah $A \text{ cm}^2$ dan volume kerucut adalah $A \text{ cm}^3$ maka tentukan:
 a. Nilai dari t.
 b. Nilai dari A.

Penyelesaian:

a. Luas permukaan kerucut = $\pi (6 + \sqrt{6^2 + t^2})$

Volume kerucut = $\frac{1}{3} \pi (6)^2 t$

$\pi (6)(\sqrt{6^2 + t^2}) = \frac{1}{3} \pi (6)^2 t$

$6 + \sqrt{6^2 + t^2} = 2t$

$\sqrt{6^2 + t^2} = 2t - 6$

Kedua ruas dikuadratkan

$36 + t^2 = 4t^2 - 24t + 36$

$0 = 3t^2 - 24t$

$0 = 3t(t - 8)$

Diperoleh $t = 8$ (karena t tidak boleh bernilai 0).

b. Luas permukaan kerucut = $\pi (6 + \sqrt{6^2 + t^2}) = \pi (6 + \sqrt{6^2 + 8}) = 96\pi \text{ cm}^2$

Diperoleh $A = 96$.
5. Terdapat suatu bangun ruang yang diperoleh dari dua kerucut yang sepasang. Kerucut yang lebih besar memiliki jari-jari 10 cm dan tinggi 24 cm. Jari-jari kerucut kecil adalah ½ jari kerucut besar, tinggi kerucut kecil adalah ½ tinggi kerucut besar (lihat gambar di bawah)

![Diagram kerucut]

Tentukan:

a. Luas permukaan.
b. Volume.

Penyelesaian:

a. Luas permukaan = \(\pi(10)^2 - \pi(5)^2 + \pi(10)(10 + 26) + \pi(5)(5 + 13) \)

\[= 100\pi - 25\pi + 360\pi + 90\pi \]

\[= 525\pi \text{ cm}^2 \]

b. Volume = \(\frac{1}{3} \pi(10)^2 \times 24 - \frac{1}{3} \pi(5)^2 \times 12 \)

\[= 800\pi - 100\pi = 700\pi \]

6. **Irisan Kerucut.** Misalkan terdapat suatu kerucut dengan jari-jari \(r \) cm dan panjang \(t \) cm. Kemudian kerucut tersebut dijadikan irisan kerucut dengan memotong kerucut tersebut menjadi dua bagian dari atas ke bawah (lihat gambar di samping). Tentukan rumus untuk menghitung luas irisan tabung tersebut.

Penyelesaian:

Perhatikan gambar di samping

\[L = \frac{1}{2} \times \text{luas permukaan kerucut} \]

\[+ \text{luas segitia } ABC \]

\[= \frac{1}{2} \pi r (r + \sqrt{r^2 + t^2}) + rt \]
7. **Analisis Kesalahan.** Budi menghitung volume kerucut dengan diameter 10 cm dan tinggi 12 cm. Budi menghitung

\[V = \frac{1}{3} (12)^2 (10) = 480 \]

Sehingga diperoleh volume kerucut adalah 480 cm³. Tentukan kesalahan yang dilakukan Budi.

Penyelesaian:

Budi salah mensubstitusikan nilai \(r \) dan \(t \), selain itu jari-jarinya adalah \(\frac{10}{2} = 5 \) cm.

8. Dari kertas karton ukuran 1 m \(\times \) 1 m Lisa akan memuat jaring-jaring kerucut dengan jari-jari \(r \) cm dan tinggi \(t \) cm.

a. Apakah Lisa bisa membuat jaring-jaring tersebut jika \(r = 40 \) cm dan \(t = 30 \) cm? Kemukakan alasanmu.

b. Apakah Lisa bisa membuat jaring-jaring tersebut jika \(r = 30 \) cm dan \(t = 40 \) cm? Kemukakan alasanmu.

Penyelesaian:

a. Luas kertas karton = 1 m\(^2\) = 10,000 cm\(^2\)

Tidak bisa, dikarenakan
luas jaring-jaring kerucut = \(\pi (40)(40 + 50) = 3,600\pi \) cm\(^2\) > 10,000 cm\(^2\)

b. Perhatikan gambar di bawah ini.

Dari gambar di atas dapat dipastikan bahwa tidak mungkin dapat menggambar suatu juring dengan jari-jari 50 cm dan menempel lingkaran merah.
9. **Kerucut miring.** Padagambar di bawah terdapat dua buah bangun sisi lengkung. Sebelah kiri merupakan kerucut dengan jari-jari r dan tinggi t. Sebelah kanan merupakan bangun ruang sisi lengkung yang diperoleh dari kerucut sebelah kiri dengan menggeser alasnya ke sebelah kanan, selanjutnya disebut dengan **kerucut miring.** Kerucut miring tersebut memiliki jari-jari r dan tinggi t.

![Diagram of a cone]

a. Tentukan suatu metode untuk mendapatkan rumus dari volume kerucut miring tersebut.

Penyelesaian:

a. Salah satu metode adalah dengan membuat tumpukan koin yang membentuk kerucut miring.

b. Sama, karena kaidah volume adalah luas alas dikalikan dengan tinggi. Dengan merubah kerucut menjadi kerucut miring tidak merubah alas dan tingginya, sehingga tidak terjadi perubahan volume.

Penyelesaian:

Hint: $r = \frac{d}{2}, s = d, t = \sqrt{s^2 - r^2} = \sqrt{\frac{d^2}{4} - \frac{d^2}{4}} = \frac{1}{2} \sqrt{3} d$

Luas permukaan = $\pi r(r + s)$

$= \pi \left(\frac{d}{2}\right)\left(\frac{d}{2} + d\right)$

$= \frac{3}{4} d^2 \pi$ cm2

Volume = $\frac{1}{3} \pi r^2 t$

$= \frac{1}{3} \pi \left(\frac{d}{2}\right)^2 \times \frac{1}{2} \sqrt{3} d$

$= \frac{1}{24} \sqrt{3} d^3$ cm3
C. Bola

Pertanyaan Penting

Tanyakan kepada siswa tentang pemahaman mereka mengenai bola. Tanyakan juga bagaimana untuk menghitung luas permukaan dan volume bola. Bila diperlukan dapat menggunakan peraga yang telah dibawa.

Pertanyaan Penting

Tahukah siswa rumus menghitung luas permukaan dan volume bola?

Kerjakan beberapa kegiatan berikut agar siswa dapat mengetahui dan memahami jawaban pertanyaan di atas.

Kegiatan 5.10 Menentukan Luas Bola Melalui Eksperimen

Tujuan dari kegiatan ini adalah membantu siswa memahami cara mendapatkan luas permukaan bola melalui eksperimen. Dari kegiatan ini diharapkan siswa bisa menyimpulkan bahwa

Jika terdapat lingkaran dan bola dengan jari-jari yang sama maka luas permukaan bola adalah 4 kali luas lingkaran.

Alat-alat yang diperlukan dapat disiapkan sekolah (jika memungkinkan) atau para siswa yang membawanya dari rumah. Para siswa dibagi menjadi kelompok dengan masing-masing kelompok beranggotakan 3-5 siswa.

Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 5.10.

Kegiatan 5.10 Menentukan Luas Bola Melalui Eksperimen

Kerjakan kegiatan ini secara kelompok sebanyak 3 sampai 5 siswa. Benda atau alat yang perlu disiapkan:

1. Bola plastik ukuran kecil sebanyak tiga.
2. Gunting
3. Benang
4. Pensil dan penggaris
5. Kertas karton
6. Lem
Langkah-langkah dari kegiatan ini adalah

2. Buatlah beberapa lingkaran di karton dengan jari-jari yang siswa peroleh dari Langkah 1.

7. Untuk lebih meyakinkan, ulangi Langkah 1 sampai dengan Langkah 6 dengan menggunakan bola kedua dan ketiga.

Kegiatan 5.11
Mendapatkan Rumus Luas Permukaan Bola

Tujuan dari kegiatan ini adalah membantu siswa mendapatkan luas permukaan bola berdasarkan penemuan Archimedes pada bagian Tahukah Siswa? Dari kegiatan ini diharapkan siswa bisa menyimpulkan bahwa

Jika terdapat tabung dengan jari-jari r dan tinggi 2r serta bola dengan jari-jari r maka luas permukaan bola adalah \(\frac{2}{3} \) luas permukaan tabung.

Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 5.11.

Diskusikan dengan teman sebangkumu beberapa pertanyaan berikut:

a. Apakah bola memiliki jaring-jaring?

b. Bagaimana cara menentukan luas permukaan bola?

Kemudian baca dan pahami informasi di bawah ini.
Tahukah Kamu?

Dalam karyanya yang berjudul “On Spheres and Cylinder”, Archimedes menyatakan bahwa “Sebarang tabung yang memiliki jari-jari yang sama dengan jari-jari bola dan tingginya sama dengan diameter bola, maka luas permukaan tabung sama dengan 3/2 kali luas permukaan bola.”

Dengan kata lain, perbandingan luas permukaan bola yang memiliki jari-jari r dengan luas permukaan tabung yang memiliki jari-jari r dan tinggi $2r$ adalah $2 : 3$.

Selanjutnya jawab pertanyaan di bawah ini:

b. Bagaimana cara menentukan luas permukaan bola berdasarkan informasi di atas?

Pada kegiatan ini siswa akan mendapatkan rumus menghitung luas bola dengan menggunakan perbandingan dengan luas tabung.

Terdapat dua bangun:

a. Tabung dengan jari-jari r dan tinggi $2r$.

b. Bola dengan jari-jari r.

Sekarang ikuti langkah-langkah berikut.

 $$L_{\text{tabung}} = 2\pi r(r + t) = 2\pi r(r + 2r) = 6\pi r^2$$

2. Selanjutnya berdasarkan pernyataan Archimedes, siswa bisa mendapatkan rumus untuk menghitung luas bola.

 $$L_{\text{bola}} = \frac{2}{3} \times L_{\text{tabung}}$$

 $$= \frac{2}{3} \times 6\pi r^2$$

 $$= 4\pi r^2$$
Kegiatan 5.12 Menentukan Volume Bola Melalui Eksperimen

Tujuan dari kegiatan ini adalah membantu siswa memahami cara mendapatkan volume kerucut melalui eksperimen. Dari kegiatan ini diharapkan siswa bisa menyimpulkan bahwa

\[
\text{Jika terdapat tabung dengan jari-jari } r \text{ dan tinggi } 2r \text{ serta bola dengan jari-jari } r \text{ maka volume bola adalah } \frac{2}{3} \text{ volume tabung.}
\]

Alat-alat yang diperlukan dapat disiapkan sekolah (jika memungkinkan) atau para siswa yang membawanya dari rumah. Para siswa dibagi menjadi kelompok dengan masing-masing kelompok beranggotakan 3-5 siswa.

Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 5.12.

Kegiatan 5.12 Menentukan Volume Bola Melalui Eksperimen

Kerjakan kegiatan ini secara kelompok. Siapkan bola plastik, alat tulis, penggaris, kertas karton dan pasir.

c. Lubangi bola plastik dengan menggunakan cutter.

d. Isi bola plastik yang sudah berlubang dengan pasir sampai penuh.

f. Berapa kali siswa mengisi dua tabung sampai penuh dengan menggunakan bola?

g. Gunakan hasil (f) untuk menentukan perbandingan volume bola dengan volume tabung.

Kegiatan 5.13 Mendapatkan Rumus Volume Bola

Tujuan dari kegiatan ini adalah membantu siswa mendapatkan rumus volume bola berdasarkan hasil dari Kegiatan 5.13.
Kegiatan 5.13 Mendapatkan Rumus Volume Bola

Kerjakan kegiatan ini secara individual. Tabung pada Kegiatan 5.12 memiliki jari-jari r dan tinggi $2r$. Hitung volume dari tabung tersebut dan gunakan hasil dari Kegiatan 3 untuk menentukan rumus menghitung volume bola.

$$V_{\text{bola}} = \frac{2}{3} V_{\text{tabung}}$$
$$= \frac{2}{3} \pi r^2 t$$
$$= \frac{2}{3} \pi r^2 (2r) = \frac{4}{3} \pi r^3$$

Materi Esensi Bola

Definisi Bola:

Bola adalah bangun ruang sisi lengkung yang dibentuk dari tak hingga lingkaran yang memiliki jari-jari sama panjang dan berpusat pada titik yang sama. Bola hanya memiliki satu sisi yang merupakan lingkaran sebesar 360° dengan diameter sebagai sumbu rotasi.

Benda dalam kehidupan sehari-hari yang berbentuk bola adalah bola olahraga (sepakbola, basket, voli dan lain-lain), kelereng, globe, dan lainnya.

Luas Permukaan Bola:

Luas permukaan bola adalah sama dengan 4 kali luas lingkaran yang memiliki jari-jari yang sama atau dapat dituliskan sebagai berikut:

$$L = 4\pi r^2$$
Volume Bola:

Volume bola adalah hasil kali \(\frac{4}{3} \pi \) dengan pangkat tiga jari-jari bola tersebut atau dapat dituliskan sebagai berikut:

\[
V = \frac{4}{3} \pi r^3
\]

Contoh 5.11

Menghitung Luas Permukaan Bola

Pada Contoh 5.11, siswa diajak untuk menghitung luas permukaan bola yang jari-jari dan tingginya sudah diketahui.

Contoh 5.11

Menghitung Luas Permukaan Bola

Hitung luas bola di samping.

Alternatif Penyelesaian:

Diameter bola di samping adalah 10 cm, maka jari-jarinya adalah \(r = 5 \) cm.

\[
L = 4\pi r^2 \quad \text{rumus luas permukaan bola}
\]

\[
= 4\pi (5)^2 \quad \text{substitusi nilai } r
\]

\[
= 100\pi
\]

Jadi, luas bola adalah 100\(\pi \) cm\(^2\).

Contoh 5.12

Menghitung Jari-jari Bola Jika Diketahui Luas Permukaannya

Pada Contoh 5.12, siswa diajak untuk menghitung jari-jari bola ketika diketahui luas permukanya.

Contoh 5.12

Menghitung Jari-jari Bola Jika Diketahui Luas Permukaannya

Hitung jari-jari bola di samping.

Alternatif Penyelesaian:

Luas permukaan bola di samping adalah \(L = 441 \) m\(^2\).

\[
L = 4\pi r^2 \quad \text{rumus luas permukaan bola}
\]

\[
441\pi = 4\pi r^2 \quad \text{substitusi nilai } L
\]

\[
L = 441 \text{ m}^2
\]
441 = 4r^2 \quad \text{kedua ruas dibagi dengan } \pi
21 = 2r

Jadi, jari-jari bola adalah 10,5 cm.

Contoh 5.13
Menghitung Volume Bola

Pada Contoh 5.13, siswa diajak untuk menghitung volume bola ketika jari-jarinya sudah diketahui.

Contoh 5.13
Menghitung Volume Bola

Hitung volume bola di samping.

\text{Alternatif Penyelesaian:}

Jari-jari bola di samping adalah \(r = 12 \text{ m} \).

\begin{align*}
V &= \frac{4}{3} \pi r^3 \quad \text{rumus volume bola} \\
&= \frac{4}{3} \pi (12)^3 \quad \text{substitusi nilai } r \\
&= \frac{4}{3} \pi (1.728) \\
&= 2.304\pi
\end{align*}

Luas bola adalah 2.304\pi \text{ m}^3.

Contoh 5.14
Menghitung Jari-jari Bola Jika Diketahui Volume

Pada Contoh 5.14, siswa diajak untuk menghitung jari-jari bola jika diketahui volumenya.

Contoh 5.14
Menghitung Jari-jari Bola Jika Diketahui Volume

Hitung jari-jari bola di samping.

\text{Alternatif Penyelesaian:}

Volume bola di samping adalah \(V = 288 \text{ m}^3 \)

\begin{align*}
V &= \frac{4}{3} \pi r^3 \quad \text{rumus volume bola} \\
288\pi &= \frac{4}{3} \pi r^3 \quad \text{substitusi nilai } V
\end{align*}
216 = r³
6 = r
kedua ruas dikali dengan \(\frac{3}{4\pi} \)

Jari-jari bola adalah 6 m.

Ayo Kita Tinjau Ulang

Pada bagian ini, siswa diajak untuk mengerjakan beberapa soal tambahan yang berdasarkan contoh-contoh sebelumnya namun dengan beberapa perubahan.

Pada soal 1, siswa akan diajak untuk menghitung luas permukaan bola pada Contoh 1 namun jari-jarinya dijadikan 2 kali lipat dan menghitung berapa kali lipat luasnya berubah. Selanjutnya siswa diajak untuk menghitung luas permukaan ketika jari-jarinya dijadikan \(a \) kali lipat.

Pada soal 2, siswa akan diajak untuk menghitung jari-jari bola pada Contoh 5.12 namun luas permukanya dijadikan 2 kali lipat dan menghitung berapa kali lipat jari-jarinya berubah. Selanjutnya siswa diajak untuk menghitung jari-jari ketika luas permukannya dijadikan \(a \) kali lipat.

Pada soal 3, siswa akan diajak untuk menghitung luas permukaan bola pada Contoh 5.13 namun jari-jarinya dijadikan 2 kali lipat dan menghitung berapa kali lipat luasnya berubah. Selanjutnya siswa diajak untuk menghitung luas permukaan ketika jari-jarinya dijadikan \(a \) kali lipat.

Pada soal 4, siswa akan diajak untuk menghitung jari-jari bola pada Contoh 5.14 namun luas permukanya dijadikan 2 kali lipat dan menghitung berapa kali lipat jari-jarinya berubah. Selanjutnya siswa diajak untuk menghitung jari-jari ketika luas permukannya dijadikan \(a \) kali lipat.

Ayo Kita Tinjau Ulang

1. Perhatikan kembali soal pada Contoh 5.11. Jika jari-jari diubah menjadi 2 kali lipatnya, berapa kali lipat luasnya? Secara umum, jika jari-jari diubah menjadi \(a \) kali lipatnya \((a > 0) \), berapa kali lipat luasnya?

2. Perhatikan kembali soal pada Contoh 5.12. Jika luasnya diubah menjadi 2 kali lipatnya, berapa kali lipat jari-jarinya? Secara umum, jika luasnya diubah menjadi \(a \) kali lipatnya \((a > 0) \), berapa kali lipat jari-jarinya?

3. Perhatikan kembali soal pada Contoh 5.13. Jika jari-jari diubah menjadi 2 kali lipatnya, berapa kali lipat volumenya? Secara umum, jika jari-jari diubah menjadi \(a \) kali lipatnya \((a > 0) \), berapa kali lipat volumenya?
4. Perhatikan kembali soal pada Contoh 5.14. Jika volumenya diubah menjadi 2 kali lipatnya, berapa kali lipat jari-jarinya? Secara umum, jika volumenya diubah menjadi \(a\) kali lipatnya \((a > 0)\), berapa kali lipat jari-jarinya?

Penyelesaian:

1. Pada Contoh 5.11 jari-jarinya 5 cm. Jika jari-jarinya dijadikan dua kali lipat maka \(r = 10\) cm dan
 \[
 L = 4\pi r^2 = 4\pi(10)^2 = 400\pi r\text{ cm}^2
 \]
 Luas permukaannya menjadi 4 kali lipat. Secara umum jika jari-jarinya dijadikan \(a\) kali lipat maka luas permukaannya menjadi \(a^2\) kali lipat.

2. Pada Contoh 5.12 luas permukaanya 441\(\pi\) cm². Jika luas permukaanya dijadikan dua kali lipat maka \(V = 882\pi\) cm² dan
 \[
 L = 4\pi r^2
 \]
 \[
 882\pi = 4\pi r^2
 \]
 \[
 882 = 4r^2
 \]
 \[
 21\sqrt{2} = 2r
 \]
 Jari-jarinya menjadi \(\sqrt{2}\) kali lipat. Secara umum volumenya dijadikan a kali lipat maka jari-jarinya menjadi \(\sqrt{a}\) kali lipat.

3. Pada Contoh 5.13 jari-jarinya 12 m. Jika jari-jarinya dijadikan dua kali lipat maka \(r = 24\) m dan
 \[
 V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi(24)^2 = 18.432\pi\text{ m}^3
 \]
 Volumenya menjadi 8 kali lipat. Secara umum jika jari-jarinya dijadikan \(a\) kali lipat maka volumenya menjadi \(a^3\) kali lipat.

4. Pada Contoh 5.14 luas permukaanya 288\(\pi\) cm². Jika volumenya dijadikan dua kali lipat maka \(V = 576\pi\) cm³ dan
 \[
 V = \frac{4}{3}\pi r^3
 \]
 \[
 576\pi = \frac{4}{3}\pi r^3
 \]
 \[
 432 = r^3
 \]
 \[
 6\sqrt{2} = r
 \]
 Jari-jarinya menjadi \(\sqrt{2}\) kali lipat. Secara umum jika volumenya dijadikan \(a\) kali lipat maka jari-jarinyanya menjadi \(\sqrt{a}\) kali lipat.
Latihan 5.3 Bola

1. Tentukan luas permukaan dan volume bangun bola berikut:

 ![Bola](image)

Penyelesaian:
Gunakan rumus luas permukaan dan volume bola. Jika diketahui diameter ubah menjadi jari-jari.

 a. Luas = 576π m2
 \[\text{Volume} = 2304\pi \text{ m}^3\]
 b. Luas = 100π cm2
 \[\text{Volume} = \frac{500}{3} \pi \text{ cm}^3\]
 c. Luas = 144π dm2
 \[\text{Volume} = 288\pi \text{ dm}^3\]
 d. Luas = 81π cm2
 \[\text{Volume} = \frac{243}{2} \pi \text{ cm}^3\]
 e. Luas = 400π m2
 \[\text{Volume} = \frac{4000}{3} \pi \text{ m}^3\]
 f. Luas = 900π m2
 \[\text{Volume} = 4500\pi \text{ m}^3\]

2. Berapakah luas permukaan dari bangun setengah bola tertutup berikut:

 ![Bola Setengah](image)

300 Buku Guru Kelas IX SMP/MTs
Penyelesaian:
Gunakan rumus luas permukaan dan volume bola serta setengah bola. Jika diketahui diameter ubah menjadi jari-jari

a. Luas = \(48\pi \text{ cm}^2\)
 Volume = \(\frac{128}{3} \pi \text{ cm}^3\)

d. Luas = \(192\pi \text{ m}^2\)
 Volume = \(\frac{1024}{3} \pi \text{ m}^3\)

b. Luas = \(432\pi \text{ cm}^2\)
 Volume = \(1.152\pi \text{ cm}^3\)

e. Luas = \(\frac{675}{4} \pi \text{ m}^2\)
 Volume = \(\frac{1.125}{4} \pi \text{ m}^3\)

c. Luas = \(108\pi \text{ cm}^2\)
 Volume = \(\frac{144\pi}{3} \text{ cm}^3\)

f. Luas = \(\frac{36\pi}{3} \text{ dm}^2\)
 Volume = \(\frac{2.662}{3} \pi \text{ dm}^3\)

3. Dari soal-soal nomor 2 tentukan rumus untuk menghitung luas permukaan setengah bola tertutup.

Penyelesaian:
\(L = \frac{1}{2} \text{ luas permukaan bola + luas lingkaran} = \frac{1}{2} \times 4\pi r^2 + \pi r^2 = 3\pi r^2\)

4. Tentukan jari-jari dari bola dan setengah bola tertutup berikut:

a. \(L = 729\pi \text{ cm}^2\)
 \(V = 2.304\pi \text{ cm}^3\)

b. \(V = 36\pi \text{ cm}^3\)

c. \(L = 27\pi \text{ m}^2\)
 \(L = 45\pi \text{ m}^2\)
 \(V = \frac{128}{3} \pi \text{ m}^3\)
Penyelesaian:
Gunakan rumus luas permukaan dan volume bola serta setengah bola. Jika diketahui diameter ubah menjadi jari-jari

a. \(r = \frac{27}{2} \text{ cm} \)
 d. \(r = 3 \text{ m} \)

b. \(r = 12 \text{ cm} \)
 e. \(r = \sqrt{15} \text{ m} \)

c. \(r = 3 \text{ m} \)
 f. \(r = 8 \text{ m} \)

5. **Berpikir kritis.** Terdapat suatu bola dengan jari-jari \(r \) cm. Jika luas permukaan bola tersebut adalah \(A \) cm\(^2\) dan volume bola tersebut adalah \(A \) cm\(^3\), tentukan:

a. Nilai \(r \)

b. Nilai \(A \)

Hint: \(4\pi r^2 = \frac{4}{3} \pi r^3 \)

Penyelesaian:

a. Luas permukaan = \(4\pi r^2 \)

 Volume = \(\frac{4}{3} \pi r^3 \)

 \[
 4\pi r^2 = \frac{4}{3} \pi r^3
 \]

 \[
 3 = r
 \]

b. Luas permukaan = \(4\pi r^2 = 4\pi(3)^2 = 36\pi \)

6. Bangun di samping dibentuk dari dua setengah bola yang sepusat. Setengah bola yang lebih kecil memiliki jari-jari \(r_1 = 4 \text{ cm} \) sedangkan yang lebih besar memiliki jari-jari \(r_2 = 8 \text{ cm} \).

 Tentukan:

a. Luas permukaan bangun tersebut

b. Volume bangun tersebut.

Penyelesaian:

a. Luas permukakan = \(\frac{1}{2} \times \) luas permukaan bola besar + \(\frac{1}{2} \times \) luas permukaan bola kecil + luas lingkaran besar − luas lingkaran kecil

 \[
 = \frac{1}{2} \times 4\pi(8)^2 + \frac{1}{2} \times 4\pi(4)^2 + \pi(8)^2 - \pi(4)^2
 \]

 \[
 = 128\pi + 32\pi + 64\pi - 16\pi
 \]

 \[
 = 208\pi \text{ cm}^2
 \]

b. Volume = Volume setengah bola besar − volume setengah bola kecil

 \[
 = \frac{2}{3} \pi(8)^3 - \frac{2}{3} \pi(4)^3
 \]

 \[
 = \frac{2}{3} \pi(512 - 64) = \frac{2}{3} \pi \times 448 = \frac{896}{3} \pi \text{ cm}^3
 \]
7. **Analisis kesalahan.** Lia menghitung luas permukaan bola dengan cara membagi volume bola dengan jari-jari bola tersebut \(L = \frac{V}{r} \). Tentukan kesalahan yang dilakukan oleh Lia.

Penyelesaian:
\[L = 4\pi r^2, \quad V = \frac{4}{3} \pi r^3. \] Sehingga \(V = \frac{Lr}{3} \) yang berakibat \(L = \frac{3V}{r} \)

8. **Bola di dalam kubus.** Terdapat suatu kubus dengan panjang sisi \(s \) cm. Dalam kubus tersebut terdapat bola dengan kondisi semua sisi kubus menyentuh bola (lihat gambar di samping).

 a. Tentukan luas permukaan bola tersebut.
 b. Tentukan volume bola tersebut.

Petunjuk: tentukan jari-jari bola terlebih dahulu.

Penyelesaian:
Jari-jari bola adalah \(s \) cm.

 a. Luas = \(4\pi s^2 \)
 b. Volume = \(\frac{4}{3} \pi s^3 \)

9. **Kubus di dalam bola.** Terdapat suatu kubus dengan panjang sisi \(s \) cm. Kubus tersebut berada di dalam bola dengan kondisi semua titik sudut kubus menyentuh bola.

 a. Tentukan luas permukaan bola tersebut.
 b. Tentukan volume bola tersebut.

Petunjuk: tentukan jari-jari bola terlebih dahulu.

Penyelesaian:
Diagonal bidang kubus = diameter bola, diperoleh
\[r = \frac{1}{2} \sqrt{3} s \]

 a. Luas = \(4\pi r^2 = 4\pi \left(\frac{1}{2} \sqrt{3} s \right)^2 = 3\pi s^3 \)
 b. Volume = \(\frac{4}{3} \pi r^3 = \frac{4}{3} \pi \left(\frac{1}{2} \sqrt{3} s \right)^3 = \frac{1}{2} \sqrt{3} \pi s^3 \)

Hint: Perbandingan volume.

Penyelesaian:
Misalkan banyaknya kelereng tipe I adalah \(m \) sedangkan tipe II adalah \(n \).

\[V_1 = \text{volume kelereng tipe I} = \frac{4}{3} \pi (2)^3 = \frac{32}{3} \pi \text{ cm} \]

\[V_2 = \text{volume kelereng tipe II} = \frac{4}{3} \pi (4)^3 = \frac{256}{3} \pi \text{ cm} \]

Timbangan setimbang jika volume total pada kedua sisi timbangan adalah sama.

\[m \times \frac{32}{3} \pi = n \times \frac{256}{3} \pi \]

\[m = 8n \]

Diperoleh \(m : n = 8 : 1 \)

Proyek 5

Kerjakan secara kelompok beranggotakan 5 siswa.

a. Tiap-tiap siswa membawa botol (bisa botol minuman, kecap, dan lain-lain).
b. Isi tiap-tiap botol dengan air dan hitung volumenya.
c. Hitung volume tiap-tiap botol (siswa bisa menghitung jari-jari dan tinggi terlebih dahulu).
d. Bandingkan hasil (b) dengan (a) dan isi tabel di bawah ini.

| | Volume Asli \((V_a)\) | Volume Hitungan \((V_h)\) | Selisih \(|V_a - V_h|\) | Persentase* |
|-------|-----------------------|--------------------------|------------------------|-------------|
| Botol 1 | | | | |
| Botol 2 | | | | |
| Botol 3 | | | | |
| Botol 4 | | | | |
| Botol 5 | | | | |

e. Presentasikan hasilnya di depan kelas.

Keterangan:
Persentase = \(\frac{\text{Selisih}}{V_a} \times 100\% \)

Catatan:
- Ubah semua satuan menjadi ‘cm’.
- 1 Liter = 1.000 cm\(^3\)
Untuk Soal 1 - 2 perhatikan gambar-gambar di bawah ini.

a. 5 cm
b. 24 dm
c. 1 m
d. 15 cm

12 cm

16 dm
e. 2 m

f. 2 m
g. 24 cm

h. 5 m

i. 8 dm

j. 12 m

k. 6 dm

l. 16 cm
1. Tentukan luas permukaan tiap-tiap bangun.
 Penyelesaian:
 Gunakan rumus luas permukaan yang sudah diketahui.

 a. \(190\pi\ \text{cm}^2\)
 b. \(1.248\pi\ \text{dm}^2\)
 c. \(6\pi\ \text{m}^2\)
 d. \(216\pi\ \text{cm}^2\)
 e. \(200\pi\ \text{dm}^2\)
 f. \(3\pi\ \text{m}^2\)
 g. \(576\pi\ \text{cm}^2\)
 h. \(100\pi\ \text{m}^2\)
 i. \(256\pi\ \text{dm}^2\)
 j. \(180\pi\ \text{m}^2\)
 k. \((36 + 18\sqrt{13})\pi\ \text{dm}^2\)
 l. \(256\pi\ \text{cm}^2\)

2. Tentukan volume tiap-tiap bangun.
 Penyelesaian:
 Gunakan rumus luas permukaan yang sudah diketahui.

 a. \(350\pi\ \text{cm}^3\)
 b. \(5.760\pi\ \text{dm}^3\)
 c. \(2\pi\ \text{m}^3\)
 d. \(324\pi\ \text{cm}^3\)
 e. \(320\pi\ \text{dm}^3\)
 f. \(\frac{\sqrt{3}}{3}\ \pi\ \text{m}^3\)
 g. \(2.304\pi\ \text{cm}^3\)
 h. \(\frac{500}{3}\ \pi\ \text{m}^3\)
 i. \(\frac{2.048}{3}\ \pi\ \text{dm}^3\)
 j. \(324\pi\ \text{m}^3\)
 k. \(108\pi\ \text{dm}^3\)
 l. \(\frac{2.048}{3}\ \pi\ \text{cm}^3\)

Untuk soal 3 - 6 perhatikan tabel di bawah ini.

<table>
<thead>
<tr>
<th>Tabung</th>
<th>Setengah Tabung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Luas Permukaan = (2\pi r(r + t))</td>
<td>Luas Permukaan = ...?</td>
</tr>
<tr>
<td>Volume = (\pi r^2 t)</td>
<td>Volume = ...?</td>
</tr>
<tr>
<td>Kerucut</td>
<td>Setengah Kerucut</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Luas Permukaan</td>
<td>Luas Permukaan</td>
</tr>
<tr>
<td>$2\pi r(r + t)$</td>
<td>\ldots</td>
</tr>
<tr>
<td>Volume</td>
<td>Volume</td>
</tr>
<tr>
<td>$\pi r^2 t$</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bola</th>
<th>Setengah Bola</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Luas Permukaan</td>
<td>Luas Permukaan</td>
</tr>
<tr>
<td>$2\pi r(r + t)$</td>
<td>\ldots</td>
</tr>
<tr>
<td>Volume</td>
<td>Volume</td>
</tr>
<tr>
<td>$\pi r^2 t$</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

3. Tentukan rumus luas permukaan bangun-bangun pada tabel di atas.

Penyelesaian:

- Setengah tabung

 Luas = $\pi r(r + t) + 2rt$

- Setengah tabung

 Luas = $\frac{1}{2} \pi r(r + s) + rt$

 Ket: $s = \sqrt{t^2 + r^2}$

- Setengah tabung

 Luas = $3\pi r^2$

a. Apakah luas permukaan bangun sebelah kanan selalu sama dengan setengah kali luas permukaan bangun sebelah kiri?

Penyelesaian:

a. Tidak

b. Jika suatu bangun ruang dibagi menjadi dua bagian yang sama maka luas permukaannya tidak sama dengan ½ kali lipatnya.

5. Tentukan rumus volume bangun-bangun pada tabel di atas.

Penyelesaian:

- Setengah tabung

 Volume = \(\frac{1}{2} \pi r^2 t \)

- Setengah tabung

 Volume = \(\frac{1}{6} \pi r^2 t \)

- Setengah tabung

 Volume = \(\frac{2}{3} \pi r^3 \)

a. Apakah volume bangun sebelah kanan selalu sama dengan setengah kali volume bangun sebelah kiri?

b. Kesimpulan apa yang dapat siswa peroleh dari jawaban 6a?

Penyelesaian:

a. Ya

b. Jika suatu bangun ruang dibagi menjadi dua bagian yang sama maka volumenya sama dengan ½ kali lipatnya.

Untuk Soal nomor 7 perhatikan bangun-bangun di bawah ini.

![Diagram bangun-bangun](image-url)
7. Tentukan luas permukaan dan volume tiap-tiap bangun.

Penyelesaian:

a. Luas permukaan = luas lingkaran + luas selimut tabung + luas selimut kerucut
 \[= \pi r^2 + 2\pi rt + \pi r\sqrt{r^2 + t^2} = \pi r(r + 2t + \sqrt{r^2 + t^2}) \]
 Volume = volume tabung + volume kerucut
 \[= \pi r^2 t + \frac{1}{3} \pi r^2 t = \frac{4}{3} \pi r^2 t \]

b. Luas permukaan = luas selimut tabung + 2 \times luas selimut kerucut
 \[= 2\pi rt + 2\pi r\sqrt{r^2 + t^2} = 2\pi r(t + \sqrt{r^2 + t^2}) \]
 Volume = volume tabung + 2 \times volume kerucut
 \[= \pi r^2 t + 2 \times \frac{1}{3} \pi r^2 t = \frac{5}{3} \pi r^2 t \]

c. Luas permukaan = ½ luas permukaan bola + luas selimut kerucut
 \[= \frac{1}{2} \times 4\pi r^2 + \pi r\sqrt{r^2 + t^2} = \pi r(2r + \sqrt{r^2 + t^2}) \]
 Volume = ½ volume bola + volume kerucut
 \[= \frac{1}{2} \times \frac{4}{3} \pi r^3 + \frac{1}{3} \pi r^2 t = \frac{1}{3} \pi r^3(2r + t) \]

d. Luas permukaan = ½ luas permukaan bola + luas selimut tabung + luas lingkaran
 \[= \frac{1}{2} \times 4\pi r^2 + 2\pi rt + \pi r^2 = \pi r(3r + 2t) \]
 Volume = volume tabung + ½ volume bola
 \[= \pi r^2 t + \frac{1}{2} \times \frac{4}{3} \pi r^3 = \frac{1}{3} \pi r^3(3t + 2r) \]
e. Luas permukaan = \(\frac{1}{2} \) luas permukaan bola + luas selimut tabung + luas selimut kerucut

\[
= \frac{1}{2} \times 4\pi r^2 + 2\pi rt + \pi r \sqrt{r^2 + t^2} = \pi r(2r + 2t + \sqrt{r^2 + t^2})
\]

Volume = \(\frac{1}{2} \) volume bola + volume tabung + volume kerucut

\[
= \frac{1}{2} \times \frac{4}{3} \pi r^3 + \pi r^2 t + \frac{1}{3} \pi r^2 t = \frac{2}{3} \pi r^2 (r + 2t)
\]
f. Luas permukaan = luas permukaan bola + luas selimut tabung

\[
= 4\pi r^2 + 2\pi rt = 2\pi r(2r + t)
\]

Volume = volume bola + volume tabung

\[
= \frac{4}{3} \pi r^3 + \pi r^2 t = \frac{1}{3} \pi r^2 (4r + 3t)
\]

Untuk Soal nomor 8-11 perhatikan kalimat di bawah ini.

Bernalar. Suatu perusahaan coklat memproduksi tiga macam coklat yang berbentuk tabung, kerucut dan bola. Misalkan jari-jarinya adalah \(r \) dan tinggi \(t \). Perusahaan tersebut menginginkan kertas pembungkus coklat tersebut memiliki luas yang sama satu dengan yang lainnya. Misalkan

- \(T \) = Luas kertas pembungkus coklat bentuk tabung.
- \(K \) = Luas kertas pembungkus coklat bentuk kerucut.
- \(B \) = Luas kertas pembungkus coklat bentuk bola.

8. Apakah mungkin \(T = K \)? Jika ya, tentukan perbandingan \(r : t \).

Penyelesaian:

\[
T = 2\pi r(r + t), \quad K = \pi r(r + \sqrt{r^2 + t^2})
\]

Jika maka \(T = K \) maka

\[
2\pi r(r + t) = \pi r(r + \sqrt{r^2 + t^2})
\]

\[
2(r + t) = (r + \sqrt{r^2 + t^2})
\]

\[
r + 2t = \sqrt{r^2 + t^2}
\]

Kuadratkan kedua ruas diperoleh

\[
(r + 2t)^2 = (\sqrt{r^2 + t^2})^2
\]

\[
r^2 + 4rt + 4t^2 = r^2 + t^2
\]

\[
4rt + 3t^2 = 0
\]

\[
t(4r + 3t) = 0
\]

Diperoleh \(t = 0 \) atau \(4r + 3t = 0 \), keduanya tidak mungkin.
9. Apakah mungkin \(T = B \)? Jika ya, tentukan perbandingan \(r : t \).

Penyelesaian:
Mungkin, \(r : t = 1 : 1 \)
\(T = 2\pi r(r + t), B = 4\pi r^2 \)
Jika maka \(T = B \), maka
\[
2\pi r(r + t) = 4\pi r^2 \\
\implies r + t = 2r \\
\implies r = t
\]
Sehingga \(r : t = 1 : 1 \)

10. Apakah mungkin \(K = B \)? Jika ya, tentukan perbandingan \(r : t \).

Penyelesaian:
Mungkin, \(r : t = 1 : 2\sqrt{2} \)
\(K = \pi r(r + \sqrt{r^2 + t^2}), B = 4\pi r^2 \)
Jika \(K = B \), maka
\[
\pi r(r + \sqrt{r^2 + t^2}) = 4\pi r^2 \\
(r + \sqrt{r^2 + t^2}) = 4r \\
\sqrt{r^2 + t^2} = 3r
\]
Kuadratkan kedua ruas, diperoleh
\[
r^2 + t^2 = 9r^2 \\
\implies t^2 = 8r^2 \\
\implies t = \sqrt{8} r
\]
Sehingga \(r : t = 1 : 2\sqrt{2} \)

11. Apakah mungkin \(T = K = B \)? Kemukakan alasanmu.

Penyelesaian: Tidak mungkin. Cukup jelas dari jawaban soal no 8, 9 dan 10.

12. Gambar di samping merupakan cokelat berbentuk kerucut yang dibagi menjadi empat bagian, \(A, B, C \) dan \(D \). Tinggi tiap-tiap bagian adalah \(x \).

a. Tentukan perbandingan luas permukaan \(A \) dengan luas permukaan \(B \).

b. Tentukan perbandingan luas permukaan \(B \) dengan luas permukaan \(C \).
c. Tentukan perbandingan luas permukaan C dengan luas permukaan D.

Catatan: Gunakan prinsip kesebangunan.

Penyelesaian:
Perhatikan gambar di bawah ini:

![Diagram](image)

Ingin bahwa gambar di samping menggunakan prinsip kongruensi.

Diperoleh $4r = 32$ cm, sehingga $r = 8$ cm.

Luas permukaan $D = \pi r (r + \sqrt{r^2 + x^2}) = 144\pi$
Luas permukaan $C = \pi (2r)(2r + \sqrt{(2r)^2 + (2x)^2}) - \pi r \sqrt{r^2 + x^2} + \pi r^2$
 $= 576\pi - 80\pi + 64\pi = 560\pi$
Luas permukaan $B = \pi (3r)(3r + \sqrt{(3r)^2 + (3x)^2}) - \pi (2r) \sqrt{(2r)^2 + (2x)^2} + \pi (2r)^2$
 $= 729\pi - 160\pi + 256\pi = 825\pi$
Luas permukaan $A = \pi (4r)(4r + \sqrt{(4r)^2 + (4x)^2}) - \pi (3r) \sqrt{(3r)^2 + (3x)^2} + \pi (3r)^2$
 $= 1296\pi - 720\pi + 729 = 1305\pi$

a. $1305 : 825 = 87 : 55$
b. $825 : 560 = 165 : 112$
c. $560 : 144 = 35 : 9$

a. Tentukan perbandingan volume A dengan volume B.
b. Tentukan perbandingan volume B dengan volume C.
c. Tentukan perbandingan volume C dengan volume D.

Penyelesaian:

Volume $D = \frac{1}{3} \pi r^2 x$

Volume $C = \frac{1}{3} \pi (2r)^2 (2x) - \frac{1}{3} \pi r^2 x = \frac{7}{3} \pi r^2 x$
Volume \(B = \frac{1}{3} \pi (3r)^2 (3x) - \frac{1}{3} \pi (2r)^2 (2x) = \frac{19}{3} \pi r^2 x \)

Volume \(A = \frac{1}{3} \pi (4r)^2 (4x) - \frac{1}{3} \pi (3r)^2 (3x) = \frac{37}{3} \pi r^2 x \)

a. \(37 : 29 \)
b. \(19 : 7 \)
c. \(7 : 1 \)

Kesebangunan bangun ruang. Dua bangun ruang dikatakan sebangun jika perbandingan panjang setiap parameternya adalah sama. Sebagai contoh, dua balok di bawah adalah sebangun jika memenuhi

\[
\frac{p_1}{p_2} = \frac{l_1}{l_2} = \frac{t_1}{t_2}
\]

Dua kerucut dikatakan sebangun jika perbandingan jari-jari sama dengan perbandingan tinggi. Begitu juga dengan dua tabung.

\[
\frac{r_1}{r_2} = \frac{t_1}{t_2}
\]

Karena bola hanya mempunyai satu parameter, yakni jari-jari, setiap dua bola adalah sebangun.

14. Untuk tiap pasangan bangun ruang yang sebangun, hitung volume yang belum diketahui
Penyelesaian:

a. Diketahui \(s_1 = 5 \text{ cm}, \ V_1 = 5 \text{ cm}, \ s_2 = 15 \text{ cm}. \) Maka

\[
\frac{r_1}{r_2} = \frac{t_1}{t_2} = \frac{s_1}{s_2} = \frac{5}{15} = \frac{1}{3}
\]

Diperoleh \(r_2 = 3r_1 \) dan \(t_2 = 3t_1 \),

\[
V_2 = \pi(r_2)^2 t_2 = \pi(3r_1)^2(3t_1) = 27\pi(r_1)^2 t_1 = 27V_1 = 324\pi \text{ cm}^3
\]

b. Diketahui \(t_1 = 10 \text{ cm}, \ L_1 = 5 \text{ cm}, \ t_2 = 5 \text{ cm}. \) Maka

\[
\frac{r_1}{r_2} = \frac{t_1}{t_2} = \frac{5}{10} = \frac{1}{2}
\]
Diperoleh $r_2 = 2r_1$ dan $t_2 = 2t_1$,

$$V_2 = 2\pi r_2(r_2 + t_2) = 2\pi(2r_1)(2r_1 + 2t_1) = 4 \times 2\pi r_1(r_1 + t_1) = 4L_1 = 800\pi \text{ cm}^2$$

c. Jika \(\frac{r_1}{r_2} = \frac{t_1}{t_2} = k \), maka \(\frac{V_1}{V_2} = k^3 \) dan \(\frac{L_1}{L_2} = k^2 \)

15. Untuk tiap pasangan bangun ruang yang sebangun, hitung panjang yang ditanyakan

a.

\[
\begin{align*}
L &= 96\pi \text{ cm}^2 \\
12 \text{ cm}
\end{align*}
\]

b.

\[
\begin{align*}
V &= 12\pi \text{ m}^3 \\
8 \text{ m}
\end{align*}
\]

b.

\[
\begin{align*}
V &= 324\pi \text{ m}^3 \\
s = ?
\end{align*}
\]

c. Dari jawaban 15a dan 15b, kesimpulan apa yang dapat diperoleh?

Penyelesaian:

a. \(r = 2 \text{ cm} \)

b. \(s = 15 \text{ m} \)

c. Jika \(\frac{L_1}{L_2} = m \) maka \(\frac{r_1}{r_2} = \frac{t_1}{t_2} = \sqrt{m} \)

Jika \(\frac{V_1}{V_2} = n \) maka \(\frac{r_1}{r_2} = \frac{t_1}{t_2} = \sqrt{n} \)
16. **Bola di dalam kerucut.**

Gambar di samping merupakan suatu kerucut dengan \(AB = AC = BC = d \). Dalam kerucut tersebut terdapat suatu bola yang menyinggung selimut dan alas kerucut. Tentukan volume bola tersebut.

Petunjuk: tentukan jari-jari bola terlebih dahulu.

Penyelesaian:

Perhatikan gambar di bawah ini:

\[
\begin{align*}
 d & \quad d \\
 r & \\
 d & \\
\end{align*}
\]

Menghitung panjang jari-jari dapat menggunakan rumus \(r = \frac{2L}{k} \)

\[
 r = \frac{2L}{k} = \frac{1}{2} \sqrt{3} d^2 = \frac{\sqrt{3}}{6} d
\]

Maka

\[
 V = \frac{4}{3} \pi r^3 = \frac{4}{3} \pi \left(\frac{\sqrt{3}}{6} d \right)^3 = \frac{4}{3} \pi \frac{3\sqrt{3}}{216} d^3 = \frac{\sqrt{3}}{54} \pi d^3
\]

17. **Kerucut di dalam bola.**

Gambar di samping merupakan suatu kerucut dengan \(AB = AC = BC = d \). Kerucut tersebut di dalam bola. Titik puncak dan alas kerucut tersebut menyentuh bola. Tentukan volume bola tersebut.

Petunjuk: tentukan jari-jari bola terlebih dahulu.

Penyelesaian:

Perhatikan gambar di bawah ini.
Menghitung panjang jari-jari dapat menggunakan rumus

\[r = \frac{abc}{4L} = \frac{d \times d \times d}{\sqrt{3}d^2} = \frac{d}{\sqrt{3}} \]

Maka

\[V = \frac{4}{3} \pi r^3 = \frac{4}{3} \pi \left(\frac{d}{\sqrt{3}} \right)^3 = \frac{4}{3} \pi \frac{d^3}{3\sqrt{3}} = \frac{4}{9} \pi d^3 \]

18. Budi mengecat tong sebanyak 14 buah. Tong tersebut berbentuk tabung terbuka dengan jari-jari 50 cm dan tinggi 1 m. Satu kaleng cat yang digunakan hanya cukup mengecat seluas 1 m². Tentukan berapa banyak kaleng cat yang dibutuhkan untuk mengecat semua tong. Gunakan \(\pi = \frac{22}{7} \).

Penyelesaian:

Luas permukaan tong = \(\pi r^2 + 2\pi rt = \frac{22}{7} \left(\frac{1}{2} \right)^2 + 2 \left(\frac{22}{7} \left(\frac{1}{2} \right) \right)(1) \)

\[= \frac{22}{7} \left(\frac{1}{4} + 1 \right) = \frac{22}{7} \left(\frac{5}{4} \right) = \frac{55}{14} \]

Banyaknya cat yang dibutuhkan = \(\frac{55}{14} \times 14 = 55 \).

a. Perkirakan/taksir luas bangun pada tiap-tiap desain. Nyatakan jawabannya dalam satuan cm².
b. Jika ketinggian kolam renang adalah 2 m, maka tentukan volume tiap-tiap desain kolam renang. Nyatakan jawabannya dalam satuan m³.

Penyelesaian:
b. Terlebih dahulu hitung luas sebenarnya (tidak menggunakan skala). Karena skala yang digunakan adalah 1 : 200, maka

 \[\text{luas sebenarnya} = \text{luas dalam skala} \times 200 \times 200 \]

Untuk menghitung volume kolam, kalikan luas sebenarnya dengan ketinggian kolam, yakni

\[\text{volume} = \text{luas sebenarnya} \times \text{ketinggian kolam} \]
\[= \text{luas sebenarnya} \times t \]

Penyelesaian:
Jari-jari bumi = 15 × 40.000.000 cm = 600.000.000 = 6.000 km
Luas permukaan bumi = \(4\pi r^2 = 4 \times 3,14 \times (6.000)^2 = 4.521.6000.000 \) km²
Informasi merupakan kebutuhan mendasar dalam kehidupan. Tabel keberangkatan kereta api, pesawat terbang, kapal laut, busway merupakan contoh informasi yang sangat bermanfaat dalam merencanakan kegiatan dalam kehidupan sehari-hari. Untuk membuat tabel keberangkatan diperlukan data sebagai dasar pembuatan.

1.1. Menghargai dan menghayati ajaran agama yang dianutnya.
2.2 Memiliki rasa ingin tahu, percaya diri dan ketertarikan pada matematika serta memiliki rasa percaya pada daya dan keganaan matematika, yang terbentuk melalui pengalaman belajar.
3.10 Menerapkan pola dan generalisasi untuk membuat prediksi.
3.11 Menentukan nilai rata-rata, median, dan modus dari berbagai jenis data.
3.12 Memilih teknik penyajian data dua variabel dan mengevaluasi keefektifannya, serta menentukan hubungan antar variabel berdasarkan data untuk mengambil kesimpulan.
4.6 Mengumpulkan, mengolah, menginterpretasi, dan menampilkan data hasil pengamatan dalam bentuk tabel dan berbagai grafik serta mengidentifikasi hubungan antar variabel serta mengambil kesimpulan.

Diagram garis, batang, dan lingkaran
Mean, Median, Modus

Informasi merupakan kebutuhan mendasar dalam kehidupan. Tabel keberangkatan kereta api, pesawat terbang, kapal laut, busway merupakan contoh informasi yang sangat bermanfaat dalam merencanakan kegiatan dalam kehidupan sehari-hari. Untuk membuat tabel keberangkatan diperlukan data sebagai dasar pembuatan.

1. Menentukan dengan tepat dalam menyajikan data dengan diagram garis, batang atau lingkaran.
2. Mengambil kesimpulan dari suatu data.
3. Menentukan nilai mean, median dan modus dari hasil survei, tabel, dan diagram.
Statistika

Pengumpulan data

Pengolahan data

Penyajian data

Ukuran Pemustaan

Diagram

Tabel

Mean, Median, Modus

Batang

Garis

Lingkaran

Berdasarkan uraian di atas dapat kita ambil beberapa hikmah, antara lain:

1. Gauss adalah orang yang mempunyai rasa ingin tahu yang sangat tinggi. Sejak kecil Gauss memiliki minat yang besar pada perhitungan, hal ini terlihat dari kemampuannya dalam mengoreksi kesalahan gaji ayahnya dan menghitung bilangan bulat dari 1 sampai 100 secara tepat dan akurat.

2. Tidak mudah puas terhadap sesuatu yang sudah didapatkan, sehingga Gauss terus mengembangkan kemampuannya pada berbagai bidang sehingga berhasil menguasai berbagai bidang keilmuan.

3. Terus melakukan inovasi untuk menemukan sesuatu yang baru, sehingga ia berhasil menemukan distribusi Gauss yang sangat berguna pada bidang statistika modern.
A. Penyajian Data

Pertanyaan Penting

- Berikan pengantar kepada siswa tentang contoh penyajian data dalam kehidupan sehari-hari.
- Minta siswa untuk mencari contoh sederhana bentuk penyajian data dan meminta mereka menjelaskan bagaimana cara untuk menyajikan data secara efektif.
- Minta siswa untuk membuat suatu kesimpulan sederhana terkait dengan bentuk penyajian data yang telah mereka kemukakan.

Pertanyaan Penting

Bagaimana siswa dapat menyajikan data secara efektif? Apakah siswa dapat menganalisa bentuk sajian data serta membuat suatu kesimpulan terkait data tersebut? Untuk menjawab pertanyaan tersebut, lakukan beberapa kegiatan di bawah ini.

Kegiatan 6.1 Penyajian Data Dalam Beberapa Jenis Diagram

1. Pada kegiatan ini siswa diminta untuk mengamati data banyaknya siswa laki-laki dan perempuan kelas IX SMP Ceria, data pertumbuhan tanaman, dan data mata pelajaran favorit.
2. Pada bagian ayo kita menalar, minta siswa untuk mengerjakan soal secara mandiri.
3. Setelah mengerjakan soal, perwakilan siswa dapat menyampaikan jawabannya di depan teman sekelasnya.
4. Lakukan penilaian kognitif terhadap jawaban siswa.
5. Guru dapat memberikan variasi lain dari soal pada kegiatan ini yang bisa didapatkan melalui berbagai literatur yang ada.
Kegiatan 6.1 Penyajian Data Dalam Beberapa Jenis Diagram

Ayo Kita Amati

Tabel berikut menunjukkan data banyak siswa laki-laki dan perempuan pada tiap-tiap kelas IX SMP Ceria.

<table>
<thead>
<tr>
<th>Kelas</th>
<th>Banyak Siswa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laki-laki</td>
</tr>
<tr>
<td>IX A</td>
<td>15</td>
</tr>
<tr>
<td>IX B</td>
<td>13</td>
</tr>
<tr>
<td>IX C</td>
<td>20</td>
</tr>
<tr>
<td>IX D</td>
<td>17</td>
</tr>
<tr>
<td>IX E</td>
<td>18</td>
</tr>
</tbody>
</table>

Selanjutnya, data yang terdapat pada tabel di atas akan ditampilkan dalam beberapa bentuk diagram, yaitu diagram batang, diagram garis, dan diagram lingkaran. Perhatikan diagram hasil pengolahan data banyak siswa di bawah ini.

Gambar 6.1 Sajian Data Banyak Siswa Kelas IX SMP Ceria dalam Bentuk Diagram Batang

Sumber: Dokumen Kemdikbud
Data Siswa Kelas IX SMP Ceria

![Data Siswa Kelas IX SMP Ceria](image)

Sumber: Dokumen Kemdikbud
Gambar 6.2 Sajian Data Banyak Siswa Kelas IX SMP Ceria dalam Bentuk Diagram Garis

<table>
<thead>
<tr>
<th>Data Siswa Laki-Laki</th>
<th>Data Siswa Perempuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX A: 22%</td>
<td>IX A: 18%</td>
</tr>
<tr>
<td>IX B: 18%</td>
<td>IX B: 21%</td>
</tr>
<tr>
<td>IX C: 16%</td>
<td>IX C: 19%</td>
</tr>
<tr>
<td>IX D: 20%</td>
<td>IX D: 25%</td>
</tr>
<tr>
<td>IX E: 24%</td>
<td>IX E: 17%</td>
</tr>
</tbody>
</table>

Sumber: Dokumen Kemdikbud
Gambar 6.3 Sajian Data Banyak Siswa Kelas IX SMP Ceria dalam Bentuk Diagram Lingkaran

Ayo Kita Menalar

1. Dari data yang terdapat di atas, kelas manakah yang memiliki jumlah siswa laki-laki terbanyak? Kelas mana yang memiliki jumlah siswa perempuan terbanyak?

Penyelesaian:

1. Kelas IX C memiliki jumlah siswa laki-laki terbanyak, sedangkan kelas IX B memiliki jumlah siswa perempuan terbanyak.

2. Diagram batang.

Setelah siswa mengamati data jumlah siswa kelas IX SMP Ceria di atas, sekarang minta siswa mengamati tabel data pertumbuhan tanaman dalam kurun waktu 12 bulan di bawah ini.

<table>
<thead>
<tr>
<th>Bulan ke-</th>
<th>Tinggi Tanaman (dalam cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>82</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>11</td>
<td>117</td>
</tr>
<tr>
<td>12</td>
<td>128</td>
</tr>
</tbody>
</table>

Selanjutnya, data yang terdapat pada tabel di atas akan ditampilkan dalam beberapa bentuk diagram, yaitu diagram batang, diagram garis, dan diagram lingkaran. Perhatikan diagram hasil pengolahan data pertumbuhan tanaman di bawah ini.

Gambar 6.4 Sajian Data Pertumbuhan Tanaman Dalam Bentuk Diagram Batang
Menurut siswa, diagram manakah yang paling efektif untuk menyajikan data pertumbuhan tanaman dalam kurun waktu 12 bulan? Jelaskan alasanmu.

Penyelesaian:

Diagram garis. Karena data pertumbuhan tanaman merupakan jenis data dalam waktu berkala atau berkesinambungan, sehingga paling efektif disajikan dalam bentuk diagram garis.
Coba siswa amati tabel mata pelajaran favorit siswa kelas IX B SMP Ceria di bawah ini.

<table>
<thead>
<tr>
<th>Mata Pelajaran</th>
<th>Banyak Peminat</th>
<th>Persentase Banyak Peminat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematika</td>
<td>12</td>
<td>25%</td>
</tr>
<tr>
<td>IPA</td>
<td>6</td>
<td>13%</td>
</tr>
<tr>
<td>IPS</td>
<td>7</td>
<td>15%</td>
</tr>
<tr>
<td>Bahasa Indonesia</td>
<td>5</td>
<td>11%</td>
</tr>
<tr>
<td>Bahasa Inggris</td>
<td>9</td>
<td>19%</td>
</tr>
<tr>
<td>Olah Raga</td>
<td>8</td>
<td>17%</td>
</tr>
</tbody>
</table>

Selanjutnya, data yang terdapat pada tabel di atas akan ditampilkan dalam beberapa bentuk diagram, yaitu diagram batang, diagram garis, dan diagram lingkaran. Perhatikan diagram hasil pengolahan data mata pelajaran favorit siswa kelas IX B SMP Ceria di bawah ini.

Gambar 6.7 Sajian Data Mata Pelajaran Favorit Siswa Kelas IX B SMP Ceria dalam Bentuk Diagram Batang

Sumber: Dokumen Kemdikbud
Banyak Peminat

0DWHPDWLND

Olah raga

Sumber: Dokumen Kemdikbud

Gambar 6.8 Sajian Data Mata Pelajaran Favorit Siswa Kelas IX B SMP Ceria dalam Bentuk Diagram Garis

Bentuk Diagram Lingkaran

Mata Pelajaran Favorit

Sumber: Dokumen Kemdikbud

Gambar 6.9 Sajian Data Mata Pelajaran Favorit Siswa Kelas IX B SMP Ceria dalam Bentuk Diagram Lingkaran
Ayo Kita Menalar

1. Berdasarkan data tersebut, apakah mata pelajaran favorit siswa kelas IX B SMP Ceria?

Penyelesaian:
1. Matematika.
2. Diagram lingkaran. Karena diagram lingkaran paling tepat digunakan untuk menyajikan data dalam bentuk persentase.

Ayo Kita Menanya

Kegiatan 6.2 Ukuran Sepatu

1. Pada kegiatan ini siswa diminta untuk mengumpulkan, mengolah, dan menyajikan data ukuran sepatu siswa satu kelas.

2. Pada bagian ayo kita mencoba, minta siswa melakukan kegiatan sesuai prosedur yang telah dijelaskan.

Kegiatan 6.2 Ukuran Sepatu

Minta siswa untuk bekerja secara mandiri untuk mengumpulkan data, mengolah data, dan menyajikan data dalam bentuk diagram. Ikuti langkah-langkah di bawah ini.
1. Coba siswa kumpulkan data ukuran sepatu teman-teman sekelasmu.
2. Buatlah dalam bentuk tabel yang menyatakan ukuran sepatu serta banyak siswa dalam satu kelas yang memiliki ukuran sepatu tersebut.
3. Sajikan data pada tabel dalam bentuk diagram batang, diagram garis, dan diagram lingkaran.
4. Gunakan komputer untuk menyajikan data dalam bentuk diagram.

**Diskusidan
Berbagi**

Penyelesaian:

Diagram yang paling efektif untuk menyajikan data ukuran sepatu adalah diagram batang.

**Ayo Kita
Menalar**

Dari Kegiatan 6.1 dan 6.2 yang telah siswa lakukan, siswa telah mengetahui cara menyajikan data dalam bentuk diagram yang paling efektif. Sekarang perhatikan beberapa jenis data yang terdapat pada tabel di bawah ini. Manakah diantara jenis data di bawah ini yang dapat disajikan secara efektif dalam bentuk diagram batang, diagram garis, atau diagram lingkaran? (Berikan tanda √)

<table>
<thead>
<tr>
<th>No.</th>
<th>Data</th>
<th>Diagram Batang</th>
<th>Diagram Garis</th>
<th>Diagram Lingkaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pertumbuhan penduduk Kota X tahun 2000-2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Banyaknya karyawan laki-laki dan perempuan dalam satu kantor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Nilai ulangan harian ke-1 matematika siswa kelas IX dalam satu kelas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Hasil pemilihan umum presiden Republik Indonesia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Data</td>
<td>Diagram Batang</td>
<td>Diagram Garis</td>
<td>Diagram Lingkaran</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5.</td>
<td>Jenis buku favorit siswa kelas IX SMP Ceria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Nilai tukar rupiah terhadap dollar dalam kurun waktu 1 minggu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Jumlah siswa yang mendaftar di SMP Ceria tahun 2010-2013</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Penyelesaian:

Diagram batang biasanya digunakan untuk menyajikan data tentang nilai suatu obyek dalam suatu waktu tertentu. Salah satu manfaat penyajian data dalam diagram batang adalah memudahkanmu dalam membaca data dan menentukan frekuensi dari suatu data dengan cepat dan akurat. Diagram garis biasanya digunakan untuk menyajikan data dalam waktu berkala atau berkesinambungan. Diagram lingkaran biasanya digunakan untuk menyajikan data dalam bentuk persentase.

Kegiatan 6.3

Data Peminat Ekstrakurikuler

1. Pada kegiatan ini siswa diminta untuk mengamati data ekstrakurikuler siswa kelas IX SMP Ceria.
2. Pada bagian diskusi dan berbagi, minta siswa berdiskusi dengan teman sebangkunya untuk menjawab beberapa pertanyaan.
3. Perwakilan siswa dapat menyampaikan jawabannya di depan teman sekelasnya.
4. Guru dapat memberikan variasi lain dari soal pada kegiatan ini yang bisa didapatkan melalui berbagai literatur yang ada.
5. Berikan kesempatan kepada siswa untuk bertanya dan mengemukakan pendapatnya.
Berikut ini adalah diagram yang menunjukkan data peminat tiap-tiap ekstrakurikuler siswa kelas IX SMP Ceria.

Sumber: Dokumen Kemdikbud

Gambar 6.10 Sajian Data Kegiatan Ekstrakurikuler Siswa
Kerjakan bersama teman sebangku. Berdasar diagram di atas tentukan:

1. Manakah kegiatan ekstrakurikuler yang paling diminati siswa kelas IX?
2. Berapa banyak siswa yang memilih ekstrakurikuler pramuka, sepak bola, dan voli?

Penyelesaian:

1. Sepak bola
2. Peminat ekstrakurikuler pramuka 18 siswa, sepak bola 20 siswa, voli 13 siswa.
3. Diagram batang.

Kegiatan 6.4 Data Penjualan Mobil

2. Pada bagian ayo kita mencoba, minta siswa untuk membuat diagram yang menurut siswa paling efektif dalam menyajikan data tersebut.
3. Pada bagian ayo kita menalar, minta siswa untuk menjawab pertanyaan yang ada secara mandiri.
4. Perwakilan siswa dapat menyampaikan jawabannya di depan teman sekelasnya.
5. Guru dapat memberikan variasi lain dari soal pada kegiatan ini yang bisa didapatkan melalui berbagai literatur yang ada.
7. Berikan pendampingan untuk siswa yang masih kurang mampu.

Kota A merupakan salah satu kota pusat industri yang sedang berkembang, Dengan semakin meningkatnya penghasilan warga kotanya, maka banyak diantara

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Jumlah Mobil yang Terjual</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>2.193</td>
</tr>
<tr>
<td>2006</td>
<td>2.541</td>
</tr>
<tr>
<td>2007</td>
<td>2.679</td>
</tr>
<tr>
<td>2008</td>
<td>2.842</td>
</tr>
<tr>
<td>2009</td>
<td>3.014</td>
</tr>
<tr>
<td>2010</td>
<td>...</td>
</tr>
<tr>
<td>2011</td>
<td>3.384</td>
</tr>
<tr>
<td>2012</td>
<td>...</td>
</tr>
<tr>
<td>2013</td>
<td>3.745</td>
</tr>
</tbody>
</table>

Ayo Kita Mencoba

Buatlah diagram yang menurut siswa paling efektif untuk menggambarkan data penjualan mobil di kota A pada tahun 2005-2013 (tanpa melibatkan data jumlah mobil yang terjual pada tahun 2010 dan 2012).

Ayo Kita Menalar

2. Bagaimana hubungan antara tahun dengan jumlah mobil yang terjual tiap tahunnya?
3. Kesimpulan apa yang dapat siswa tarik dari data penjualan mobil di Kota A berdasarkan tabel di atas?
4. Jika jumlah mobil yang dijual di kota A terus meningkat tiap tahunnya, maka diperkirakan pada tahun 2020 akan terjadi kemacetan yang cukup parah jika tidak terdapat penambahan jumlah ruas jalan. Menurutmu kebijakan apa yang harus diambil oleh Pemerintah Kota A agar tidak sampai terjadi kemacetan di tahun tersebut?
Penyelesaian:

2. Jumlah mobil yang terjual tiap tahunnya makin bertambah dengan makin bertambahnya tahun.

3. Jumlah mobil yang terjual tiap tahunnya selalu mengalami peningkatan.

4. Jawaban untuk soal ini bisa bervariasi, tujuan utama adalah menekan laju pertambahan jumlah mobil yang terjual tiap tahunnya. Salah satu langkah yang bisa ditempuh adalah dengan meningkatkan pajak kendaraan dan menerapkan aturan pembatasan jumlah mobil yang dimiliki oleh tiap penduduk di Kota A.

Materi Esensi

Penyajian Data

Ada beberapa bentuk penyajian data, salah satunya adalah dengan menggunakan diagram. Pada bab ini siswa mempelajari cara menyajikan data dalam bentuk diagram batang, garis, serta lingkaran. **Diagram batang** merupakan diagram paling sederhana dan umum. Diagram batang biasanya digunakan untuk menyajikan data tentang nilai suatu obyek dalam suatu waktu tertentu. Salah satu manfaat penyajian data dalam diagram batang adalah memudahkan dalam membaca data dan menentukan frekuensi dari suatu data dengan cepat dan akurat. **Diagram garis** biasanya digunakan untuk menyajikan data dalam waktu berkala atau berkesinambungan. **Diagram lingkaran** biasanya digunakan untuk menyajikan data dalam bentuk persentase.

Contoh 6.1

Data Hasil Panen Jagung

- Pada Contoh 6.1 diberikan salah jenis soal mengenai penyajian dan membaca data.
- Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan membaca data dan membuat suatu kesimpulan berdasarkan data yang ada.

Contoh 6.1

Data Hasil Panen Jagung

Tabel di bawah ini menunjukkan data tentang hasil panen jagung di Kota X

<table>
<thead>
<tr>
<th>Tahun ke-</th>
<th>Hasil Panen Jagung (dalam ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>240</td>
</tr>
<tr>
<td>Tahun ke-</td>
<td>Hasil Panen Jagung (dalam ton)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>3</td>
<td>210</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>260</td>
</tr>
<tr>
<td>6</td>
<td>270</td>
</tr>
<tr>
<td>7</td>
<td>290</td>
</tr>
<tr>
<td>8</td>
<td>300</td>
</tr>
<tr>
<td>9</td>
<td>320</td>
</tr>
</tbody>
</table>

1. Pada tahun ke-berapa hasil panen jagung di Kota X paling rendah?

2. Buatlah sajian diagram yang paling efektif untuk menampilkan data pada tabel di atas.

3. Pada tahun ke-berapa hasil panen jagung di kota X mengalami kenaikan paling tinggi?

Alternatif Penyelesaian:

1. Hasil panen jagung paling rendah di Kota X adalah pada tahun ke-4 dengan jumlah sebanyak 200 ton.

2. Data di atas termasuk jenis data dalam waktu berkala atau berkesinambungan. Diagram yang paling efektif untuk menyajikan data tersebut adalah diagram garis. Berikut adalah diagram garis dari data tersebut:

![Diagram Garis Hasil Panen Jagung Kota X](Gambar 6.11)

Sumber: Dokumen Kemdikbud

Gambar 6.11 Sajian Data Hasil Panen Jagung Kota X

Contoh 6.2

Penyajian Data yang Efektif

- Pada Contoh 6.2 diberikan salah jenis soal mengenai penyajian data yang paling efektif.
- Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan penyajian data yang efektif.

Contoh 6.2

Penyajian Data yang Efektif

Tentukan sajian data yang paling efektif untuk permasalahan berikut, jelaskan.

a. Data peminat SMP Ceria dari tahun 2005 sampai 2014
b. Data tinggi badan siswa kelas IX
c. Data negara tim sepak bola peserta piala dunia 2014 Brasil berdasar benua
d. Nilai tukar Rupiah terhadap dolar AS dalam kurun waktu 1 bulan

Alternatif Penyelesaian:

a. Data peminat SMP Ceria dari tahun 2005 sampai 2014
 Data perubahan peminat SMP Ceria sepanjang waktu lebih tepat digambarkan dengan diagram garis, karena diagram garis cocok digunakan untuk data dalam waktu berkala atau berkesinambungan. Dari diagram garis akan terlihat penurunan/ peningkatan jumlah peminat di SMP Unggulan tiap tahunnya.

b. Data tinggi badan siswa kelas IX
 Data tinggi badan siswa kelas IX lebih tepat digambarkan dengan diagram batang. Dari diagram batang kita dapat memperoleh informasi tinggi badan siswa serta frekuensi/jumlah siswa yang memiliki tinggi badan tersebut.

c. Data negara tim sepak bola peserta piala dunia 2014 Brasil berdasar benua.
d. Nilai tukar Rupiah terhadap dolar AS dalam sebulan

Perubahan nilai rupiah sebulan sangat tepat digambarkan dengan diagram garis karena diagram garis cocok digunakan untuk data dalam waktu berkala atau berkesinambungan. Dari diagram garis terlihat nilai pengutan /pelemahan nilai tukar rupiah terhadap dolar AS.

Ayo Kita Tinjau Ulang

1. Pada bagian tinjau ulang siswa diminta untuk mengingat dan mengulang kembali materi yang telah dipelajari pada penyajian data.
2. Minta siswa untuk mengerjakan soal secara mandiri dengan menjawab pertanyaan yang ada.
3. Minta siswa untuk menularkan jawaban dengan teman sebangku dan mencocokkan semua jawaban.

Ayo Kita Tinjau Ulang

Tabel berikut ini menunjukkan data banyak penduduk pada Kecamatan Sukodadi.

<table>
<thead>
<tr>
<th>Nama Kelurahan</th>
<th>Banyak Penduduk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laki-laki</td>
</tr>
<tr>
<td>Sukamaju</td>
<td>1.200</td>
</tr>
<tr>
<td>Mahmur</td>
<td>2.000</td>
</tr>
<tr>
<td>Indah Permai</td>
<td>1.500</td>
</tr>
<tr>
<td>Sukamakmur</td>
<td>1.400</td>
</tr>
<tr>
<td>Sumber Rejeki</td>
<td>1.800</td>
</tr>
<tr>
<td>Sumbersari</td>
<td>1.600</td>
</tr>
</tbody>
</table>

a. Buatlah diagram batang, garis, dan lingkaran dari data tersebut?
b. Diagram manakah yang paling efektif untuk menyajikan data tersebut?
c. Apa kesimpulanmu tentang banyaknya penduduk laki-laki dan perempuan pada kecamatan tersebut?
Penyelesaian:

a. Diagram untuk menayakan data tersebut dapat dibuat dengan menggunakan bantuan komputer.

b. Diagram yang paling efektif untuk menayakan data tersebut adalah diagram batang.

Latihan 6.1 Penyajian Data

1. Lakukan penilaian sikap saat siswa melakukan kegiatan diskusi dan berbagi.

2. Lakukan penilaian pengetahuan saat siswa mengerjakan kegiatan ayo kita menalar.

3. Indikator semua siswa sudah menguasai konsep adalah ketika siswa kelompok rendah sudah mampu menguasai konsep.

5. Lakukan kegiatan pembelajaran pengayaan dan remedial.

Latihan 6.1 Penyajian Data

1. Tentukan diagram apa yang paling tepat untuk menampilkan data berikut ini. Berikan alasan.
 b. Data jumlah siswa kelas IX yang mengikuti kegiatan ekstrakurikuler sepakbola, fotografi, teater, bulu tangkis dan voli.
 c. Data persentase partai pemenang pemilu 2014.

Penyelesaian:

a. Diagram Garis
b. Diagram Batang
c. Diagram Lingkaran
d. Diagram Garis

![Diagram Penjualan TV]

Sumber: Dokumen Kemdikbud
Gambar 6.12 Sajian Data Toko Elektronik Wawan Jaya Makmur Pada Bulan Januari

a. Apakah penyajian data dengan diagram di atas sudah tepat? Apakah data tersebut dapat disajikan dalam bentuk diagram yang lain yang lebih efektif? Jika ada gambarkan lagi data tersebut dalam bentuk diagram lain yang menurutmu lebih tepat.

b. Pada bulan tersebut, TV merk apa yang terjual paling banyak dan paling sedikit?

c. Berapa total TV yang terjual pada toko tersebut berdasarkan diagram di atas?

Penyelesaian:

a. Penyajian data tersebut kurang tepat. Diagram yang paling efektif untuk menyajikan data tersebut adalah diagram batang.

b. TV yang terjual paling banyak adalah merk D, dan yang paling sedikit adalah merk A dan E.

c. 114

Grafik di bawah ini menyajikan penggunaan bahan bakar terhadap waktu (dalam jam) pada perjalanan sebuah mobil dari kota M ke kota N. Gunakan informasi pada grafik di bawah ini untuk menjawab soal nomor 3-5.
3. Berapa liter bahan bakar yang dihabiskan dalam perjalanan:
 a. dari titik A ke titik B
 b. dari titik C ke titik D
 c. dari titik D ke titik E
 d. dari titik E ke titik F
 e. dari titik F ke titik G

 Penyelesaian:
 a. 20
 b. 10
 c. 10
 d. 10
 e. 30

4. a. Berapa liter bahan bakar total yang dihabiskan dalam perjalanan tersebut?
 b. Berapa lama perjalanan dari kota M ke kota N?

 Penyelesaian:
 a. 80
 b. 12 jam

5. Coba perhatikan kembali gambar di atas secara baik.
 a. Berapa banyak bahan bakar yang dihabiskan dari titik B ke titik C?
b. Menurutmu apa yang kira-kira terjadi pada perjalanan dari titik B ke titik C? Jelaskan jawaban.

Penyelesaian:

a. 0 liter

b. Mobil tidak melakukan perjalanan, sehingga tidak terjadi perubahan jumlah bahan bakar di dalam mobil tersebut.

c. Mobil tersebut mengisi ulang bahan bakarnya hingga mencapai 60 liter.

![Diagram Data Banyak Siswa Kelas IX SMP Ceria](image)

Sumber: Dokumen Kemdikbud

Gambar 6.14 Sajian Data Banyak Siswa Kelas IX SMP Ceria

a. Berapa banyak siswa kelas IX pada tahun 2008 dan 2010?

b. Jika banyaknya siswa laki-laki kelas IX pada tahun 2011 adalah 1/3 dari total seluruh siswa, berapa banyak siswa perempuan di kelas IX C?

Penyelesaian:

a. 120 pada tahun 2008 dan 130 pada tahun 2010
b. 100 siswa

7. Diagram lingkaran di bawah ini menunjukkan file yang terdapat di dalam flashdisk milik Reta yang berkapasitas 4 GB (setara dengan 4.000 MB). Flashdisk tersebut diisi dengan file musik, foto, data buku ajar matematika, data lainnya.

![Diagram Lingkaran](image)

*Sumber: Dokumen Kemdikbud
Gambar 6.15 Sajian Data File yang Terdapat di dalam Flashdisk Milik Renta yang Berkapasitas 4 GB

b. Jika Reta tidak ingin menghapus file foto, file data buku ajar, dan file data lainnya di flashdisknya, berapa persen dari keseluruhan file musik yang harus dihapus agar data buku ajar baru dapat ditambahkan ke dalam flashdisk?

Penyelesaian:

a. Tidak. Karena kapasitas flashdisk milik Reta yang masih kosong hanya sebesar 400 MB
b. 43,75% dari total file musik yang harus dihapus
8. Tabel di bawah ini menunjukkan album-album pada file Musik di dalam flashdisk milik Reta.

<table>
<thead>
<tr>
<th>Album</th>
<th>Kapasitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Album A</td>
<td>75MB</td>
</tr>
<tr>
<td>Album B</td>
<td>85MB</td>
</tr>
<tr>
<td>Album C</td>
<td>125MB</td>
</tr>
<tr>
<td>Album D</td>
<td>48MB</td>
</tr>
<tr>
<td>Album E</td>
<td>152MB</td>
</tr>
<tr>
<td>Album F</td>
<td>95MB</td>
</tr>
<tr>
<td>Album G</td>
<td>66MB</td>
</tr>
<tr>
<td>Album H</td>
<td>85MB</td>
</tr>
<tr>
<td>Album I</td>
<td>69MB</td>
</tr>
</tbody>
</table>

Dia ingin menambahkan file data buku ajar baru yang berkapasitas 750 MB tersebut, akan tetapi dia hanya ingin menghapus beberapa file Musik miliknya dengan syarat maksimal 3 album pada file Musik miliknya yang dihapus. Apakah mungkin bagi Reta untuk memasukkan file data buku ajar baru ke dalam flashdisknya? Jelaskan jawaban.

Penyelesaian:
Mungkin. File data buku ajar baru berkapasitas 750 MB, sedangkan kapasitas flashdisk Reta yang kosong hanya sebesar 400MB, dengan demikian dibutuhkan minimal 350 MB agar seluruh file data buku ajar baru dapat dimasukkan ke dalam flashdisk tersebut. Hal ini dapat dilakukan dengan menghapus Album C, Album E, dan Album F.

B. Mean, Median, dan Modus

Pertanyaan Penting
- Berikan pengantar kepada siswa mengenai ukuran pemusatan data.
- Berikan penjelasan ada tiga jenis ukuran pemusatan data yang akan dibahas, yaitu mean, median, dan modus.

Pertanyaan Penting
Apakah siswa mengetahui mean, median, dan modus dari suatu data? Bagaimana cara menentukannya? Lakukan beberapa kegiatan di bawah ini agar siswa dapat menjawab pertanyaan tersebut.
Kegiatan 6.5 Data Tinggi Badan Siswa

1. Pada kegiatan ini minta siswa untuk melakukan survei tinggi badan siswa di dalam satu kelas.
2. Pada bagian ayo kita mencoba minta siswa untuk mengikuti prosedur kegiatan yang telah ditentukan.
3. Pada bagian ayo kita menalar, minta siswa untuk mengerjakan soal secara mandiri.
4. Pada bagian ayo kita simpulkan, minta siswa untuk membuat suatu kesimpulan terkait kegiatan yang telah mereka lakukan.
5. Setelah mengerjakan soal, minta siswa untuk mencocokkan jawaban mereka dengan teman sebangku.
6. Lakukan penilaian kognitif terhadap jawaban siswa.
7. Perwakilan siswa dapat menyampaikan jawabannya di papan tulis.
8. Guru dapat memberikan variasi lain dari soal pada kegiatan ini yang bisa didapatkan melalui berbagai literatur yang ada.

Kegiatan 6.5 Data Tinggi Badan Siswa

Ayo Kita Mencoba

Lakukan survei tentang tinggi badan teman-teman sekelasmu. Ikuti langkah-langkah kegiatan di bawah ini.

1. Minta siswa mengumpulkan data tinggi badan seluruh siswa yang terdapat dalam kelasmu (dalam satuan cm).
2. Urutkan data tinggi badan tersebut dari nilai yang terkecil sampai dengan nilai terbesar.
4. Setelah siswa mendapatkan hasil dari langkah 3, bagilah nilai tersebut dengan jumlah seluruh siswa yang terdapat di dalam kelas.
1. Jika jumlah seluruh siswa di kelas menyatakan banyaknya data, berapakah banyaknya data tersebut?
2. Jika bilangan yang menunjukkan tinggi badan tiap-tiap siswa di dalam kelasmu merupakan nilai dari tiap-tiap data, berapakah jumlah seluruh nilai data tersebut?
3. Berapakah nilai yang siswa dapatkan setelah menyelesaikan langkah ke-4 pada Kegiatan 6.5 di atas?
5. Jelaskan secara singkat bagaimana rumus umum untuk mendapatkan nilai rata-rata/mean dari suatu data umum?

Setelah siswa melakukan percobaan pada Kegiatan 6.5 di atas, coba buatlah beberapa pertanyaan dengan menggunakan kata “mean”. Tulislah pertanyaanmu di buku tulis.

Dari kegiatan yang telah siswa lakukan di atas, apa yang siswa peroleh?

- Mean adalah nilai rata-rata dari suatu kumpulan data.
- Jika A menyatakan jumlah seluruh nilai dari suatu data umum, dan B menyatakan banyaknya data umum, maka rumus umum dari mean dari adalah \(\frac{A}{B} \)

Kegiatan 6.6 Data Berat Badan Siswa

1. Pada kegiatan ini minta siswa untuk mengamati data berat badan siswa pada suatu kelas di SMP Ceria.
2. Pada bagian ayo kita menalar, minta siswa untuk mengerjakan soal secara mandiri.
3. Pada bagian ayo kita mencoba, minta siswa untuk mengikuti prosedur kegiatan yang telah ditentukan.

4. Pada bagian diskusi dan berbagi, minta siswa berdiskusi dengan teman sebangkunya untuk menjawab soal di bagian diskusi dan berbagi.

5. Pada bagian ayo kita simpulkan, minta siswa untuk membuat suatu kesimpulan terkait kegiatan yang telah mereka lakukan.

7. Perwakilan siswa dapat menyampaikan jawabannya di papan tulis.

8. Lakukan penilaian kognitif terhadap jawaban siswa.

9. Guru dapat memberikan variasi lain dari soal pada kegiatan ini yang bisa didapatkan melalui berbagai literatur yang ada.

Kegiatan 6.6 Data Berat Badan Siswa

Ayo Kita Amati

Minta siswa mengamati data berat badan 9 siswa laki-laki kelas IX D SMP Ceria berikut ini (dalam kg).

47 57 53 50 45 48 52 49 55

Setelah diurutkan, data di atas dapat dituliskan kembali menjadi

45 47 48 49 50 52 53 55 57

Ayo Kita Menalar

1. Berapakah banyaknya data berat badan siswa laki-laki kelas IX D SMP Ceria di atas?

2. Apakah banyaknya data tersebut termasuk ke dalam bilangan ganjil atau bilangan genap?

3. Setelah data tersebut diurutkan, menurut siswa data ke berapa yang terdapat pada posisi/urutan paling tengah dari seluruh data yang ada?

4. Jika nilai dari data yang terletak pada posisi tengah dari kumpulan data berat badan siswa di atas disebut dengan median, berapakah nilainya?

5. Bagaimana cara siswa menentukan data yang berada pada posisi tengah dari sekumpulan data yang terurut tersebut?
Penyelesaian:

1. 9
2. Ganjil
3. Data ke-5
4. 50
5. Banyaknya data adalah 9, karena data tersebut ganjil maka data yang terletak pada posisi paling tengah didapatkan dengan menambah banyaknya data dengan 1, kemudian membaginya dengan 2.

Perhatikan kembali data berat badan 9 siswa laki-laki kelas IX D SMP Ceria pada Kegiatan 6.6 di atas. Jika dalam kelas tersebut ditambahkan seorang siswa laki-laki dengan berat badan 51 kg, coba siswa urutkan kembali data berat badan 10 siswa laki-laki pada kelas tersebut.

Diskusikan dengan teman sebangkumu untuk menjawab pertanyaan-pertanyaan di bawah ini, kemudian paparkan hasilnya di depan kelas.

1. Berapakah banyaknya data setelah ada penambahan 1 orang siswa yang masuk ke dalam data tersebut?
2. Setelah data diurutkan, menurutmu data ke berapa yang terdapat pada posisi/urutan paling tengah dari seluruh data yang ada?
3. Berapakah nilai median dari data tersebut?
4. Apakah banyaknya data tersebut termasuk ke dalam bilangan ganjil atau bilangan genap?
5. Menurutmu, adakah perbedaan cara dalam menentukan data yang terletak pada posisi tengah dari sekumpulan data berat badan siswa ketika sebelum ada penambahan data dengan setelah ada penambahan data? Jelaskan jawaban.

Penyelesaian:

1. 10
2. Data ke-5 dan data ke-6
3. Genap
5. Ada. Jika \(n \) adalah bilangan ganjil, maka median adalah nilai dari data yang terletak pada posisi paling tengah, yaitu data ke-\(\frac{n+1}{2} \). Jika \(n \) adalah bilangan genap, maka median adalah rata-rata dari dua data yang terletak pada posisi paling tengah, yaitu rata-rata dari data ke-\(\frac{n}{2} \) dan data ke-\(\frac{n}{2} + 1 \).

Ayo Kita Simpulkan

Dari kegiatan yang telah siswa lakukan di atas, apa yang siswa peroleh?

- Median adalah ...
- Bagaimana menentukan median dari suatu kumpulan data jika banyaknya data adalah bilangan ganjil?
- Bagaimana menentukan median dari suatu kumpulan data jika banyaknya data adalah bilangan genap?

Penyelesaian:

Median adalah nilai tengah pada suatu kumpulan data yang telah disusun dari nilai terkecil hingga nilai terbesar. Misalkan banyak data adalah \(n \). Jika \(n \) adalah bilangan ganjil, maka median adalah nilai dari data yang terletak pada posisi paling tengah, yaitu data ke-\(\frac{n+1}{2} \). Jika \(n \) adalah bilangan genap, maka median adalah rata-rata dari dua data yang terletak pada posisi paling tengah, yaitu rata-rata dari data ke-\(\frac{n}{2} \) dan data ke-\(\frac{n}{2} + 1 \).

Kegiatan 6.7

Data Jenis Olah Raga Favorit Siswa

1. Pada kegiatan ini minta siswa untuk untuk melakukan survei olah raga favorit siswa di dalam satu kelas.
2. Pada bagian ayo kita mencoba, minta siswa untuk mengikuti prosedur kegiatan yang telah ditentukan.
3. Pada bagian ayo kita menalar, minta siswa untuk mengerjakan soal secara mandiri.
4. Pada bagian ayo kita simpulkan, minta siswa untuk membuat suatu kesimpulan terkait kegiatan yang telah mereka lakukan.
Perwakilan siswa dapat menyampaikan jawabannya di papan tulis.
Lakukan penilaian kognitif terhadap jawaban siswa.
Guru dapat memberikan variasi lain dari soal pada kegiatan ini yang bisa didapatkan melalui berbagai literatur yang ada.

Kegiatan 6.7 Data Jenis Olah Raga Favorit Siswa

Ayo Kita Mencoba

Lakukan survei tentang jenis olah raga favorit seluruh siswa di kelasmu. Ikuti langkah-langkah kegiatan di bawah ini.

1. Minta siswa membuat survei jenis olah raga favorit seluruh siswa di kelasmu. Tiap-tiap siswa hanya diperbolehkan memilih satu jenis olah raga favoritnya.
2. Buatlah tabel yang menyatakan jenis olah favorit siswa serta banyaknya siswa yang menyukai tiap-tiap olah raga tersebut.
3. Buatlah diagram batang yang menyatakan jenis olah raga favorit terhadap banyaknya siswa yang menyukai tiap-tiap olah raga tersebut.

Ayo Kita Menalar

1. Coba perhatikan diagram batang yang telah siswa buat berdasarkan kegiatan di atas, jenis olah raga yang paling banyak digemari oleh siswa di kelasmu?
2. Jika banyaknya siswa yang menyukai olah raga paling favorit di kelasmu tersebut disebut dengan modus dari data di atas, berapakah nilai modus dari data tersebut?

Ayo Kita Menanya

Setelah siswa melakukan percobaan pada Kegiatan 6.7 di atas, coba buatlah beberapa pertanyaan dengan menggunakan kata “modus”. Tulislah pertanyaanmu di buku tulis.
Dari kegiatan yang telah siswa lakukan di atas, apa yang siswa peroleh?

Modus adalah nilai yang paling ... dalam sekumpulan data

Penyelesaian:

Modus adalah nilai paling banyak muncul dalam suatu kumpulan data.

Kegiatan 6.8 Kandidat Atlet Lomba Lari

1. Pada kegiatan ini minta siswa untuk untuk mengamati data waktu para kandidat atlet lomba lari 100 meter.
2. Pada bagian diskusi dan berbagi, minta siswa berdiskusi dengan teman sebangkunya untuk menjawab soal yang ada.
3. Perwakilan siswa dapat menyampaikan jawabannya di depan teman sekelasnya.
4. Guru dapat memberikan variasi lain dari soal pada kegiatan ini yang bisa didapatkan melalui berbagai literatur yang ada.

Ayo Kita Amati

Gambar 6.16 Kandidat Atlet Lomba Lari

Untuk persiapan lomba lari 100 m tingkat kota, SMP Ceria melakukan pelatihan selama 6 bulan dengan tiga kandidat. Berikut adalah data waktu yang diperlukan
oleh tiap-tiap kandidat untuk menempuh jarak 100 meter pada tiap-tiap akhir bulan pelatihan yang dicatat oleh tim pelatih (dalam detik).

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>Mei</th>
<th>Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andro</td>
<td>15,23</td>
<td>15,14</td>
<td>15,24</td>
<td>14,55</td>
<td>14,30</td>
<td>14,10</td>
</tr>
<tr>
<td>Bisma</td>
<td>14,30</td>
<td>14,55</td>
<td>15,01</td>
<td>14,20</td>
<td>14,25</td>
<td>14,09</td>
</tr>
<tr>
<td>Charlie</td>
<td>14,05</td>
<td>14,10</td>
<td>14,15</td>
<td>14,12</td>
<td>14,25</td>
<td>14,20</td>
</tr>
</tbody>
</table>

Penyelesaian:
Cara menentukan pilihan atlet untuk mewakili sekolah dalam lomba lari 100 meter tingkat kota adalah dengan menggunakan nilai rata-rata (mean) dari data waktu yang diperlukan oleh tiap-tiap kandidat dalam menempuh jarak 100 meter.

Materi Esensi

- Materi esensi mengenai mean, median, modus membahas tentang ukuran pemusatan data, yaitu mean, median, dan modus berdasarkan hasil kegiatan yang telah dilakukan sebelumnya.
- Guru dapat menjelaskan materi tambahan lainnya mengenai aplikasi mean, median dan modus dalam kehidupan sehari-hari.
- Berikan kesempatan kepada siswa untuk bertanya pada materi yang belum dipahami.
- Berikan bantuan pada siswa yang masih mengalami kesulitan dalam memahami materi mean, median, dan modus.
Materi Esensi

Mean adalah nilai rata-rata dari suatu kumpulan data. Cara menentukan mean yaitu dengan membagi jumlah seluruh nilai dari suatu kumpulan data dengan banyaknya data.

Modus adalah nilai paling banyak muncul dalam suatu kumpulan data.

Median adalah nilai tengah pada suatu kumpulan data yang telah disusun dari nilai terkecil hingga nilai terbesar. Misalkan banyak data adalah n. Jika n adalah bilangan ganjil, maka median adalah nilai dari data yang terletak pada posisi paling tengah, yaitu data ke-$\frac{n+1}{2}$. Jika n adalah bilangan genap, maka median adalah rata-rata dari dua data yang terletak pada posisi paling tengah, yaitu rata-rata dari data ke-$\frac{n}{2}$ dan data ke-$\frac{n}{2} + 1$.

Contoh 6.3

Menentukan Mean, Median, Dan Modus dari Suatu Data

- Pada Contoh 6.3 diberikan salah jenis soal mengenai penentuan mean, median, dan modus dari suatu kumpulan data.
- Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan mean, median, dan modus dari suatu kumpulan data.

Contoh 6.3

Menentukan Mean, Median, Dan Modus dari Suatu Data

Berikut ini adalah data nilai ujian matematika 20 siswa kelas IX E SMP Ceria:

60 80 90 70 80 80 80 90 100 100 70 60 50 70 90 80 70 60 80 90

1. Urutkan data di atas dari nilai yang terkecil sampai terbesar. Buatlah tabel yang menyatakan nilai ujian dan frekuensi siswa yang mendapatkan tiap-tiap nilai tersebut.

2. Hitunglah nilai mean, median, dan modus dari data di atas.

3. Jika nilai minimum kelulusan adalah 75, berapakah persentase siswa yang tidak lulus dalam ujian tersebut?

Alternatif Penyelesaian:

1. Berikut ini adalah hasil pengurutan data nilai ujian matematika 20 siswa kelas IX E SMP Ceria dari data dengan nilai terkecil sampai terbesar

 50 60 60 60 70 70 70 70 80 80 80 80 80 80 90 90 90 100 100
Berikut adalah tabel yang menunjukkan nilai ujian matematika dan frekuensi siswa yang mendapatkan tiap-tiap nilai tersebut.

<table>
<thead>
<tr>
<th>Nilai Ujian</th>
<th>Frekuensi</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Untuk menghitung mean dari sekelompok data di atas, maka ikuti langkah-langkah di bawah ini.

Langkah 1: Kalikan nilai ujian dengan frekuensi masing-masing yang bersesuaian

<table>
<thead>
<tr>
<th>Nilai Ujian</th>
<th>Frekuensi</th>
<th>Nilai Ujian x Frekuensi</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>180</td>
</tr>
<tr>
<td>70</td>
<td>4</td>
<td>280</td>
</tr>
<tr>
<td>80</td>
<td>6</td>
<td>480</td>
</tr>
<tr>
<td>90</td>
<td>4</td>
<td>360</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>200</td>
</tr>
</tbody>
</table>

Langkah 2: Jumlahkan seluruh data dengan cara menjumlahkan seluruh bilangan yang terdapat pada kolom 3 tabel di atas, diperoleh:

\[50 + 180 + 280 + 480 + 360 + 200 = 1.550\]

Langkah 3: Tentukan banyak data, dalam hal ini adalah banyaknya siswa, yaitu 20

Langkah 4: Tentukan nilai mean/nilai rata-rata (disimbolkan dengan \(x\)), yaitu dengan cara membagi jumlah keseluruhan data dengan banyaknya data keseluruhan

\[x = \frac{\text{Jumlah nilai seluruh data}}{\text{Banyaknya data}} = \frac{1.550}{20} = 77,5\]

Jadi mean untuk data di atas adalah 77,5

Untuk menghitung median adalah dengan cara mencari data yang berada pada posisi paling tengah dari suatu data yang telah terurut. Untuk data nilai ujian matematika siswa di atas, maka dari hasil pengurutan akan dicari data yang terdapat pada posisi paling tengah. Dengan jumlah data adalah 20, maka nilai mediansnya adalah rata-rata dari dua data yang terletak pada posisi paling tengah. Dalam hal ini merupakan rata-rata dari data ke-10 dan ke-11.
Maka mediannya adalah rata-rata dari 80 dan 80. Jadi
\[\text{Median} = \frac{80 + 80}{2} = 80 \]

Jadi median untuk data di atas adalah 80.

Nilai modus dari data di atas dapat dilihat dari nilai ujian yang memiliki frekuensi terbanyak. Dalam data tersebut, nilai modusnya adalah 80.

Jadi modus untuk data di atas adalah 80.

3. Jika nilai minimum kelulusan adalah 75, maka terdapat 8 siswa yang tidak lulus, yaitu siswa yang memiliki nilai antara 50 sampai dengan 70. Persentase siswa yang tidak lulus adalah \(\frac{8}{20} \times 100\% = 40\% \).

Contoh 6.4 Data Hujan Cerah

- Pada Contoh 6.4 diberikan salah jenis soal mengenai aplikasi mean dalam data curah hujan di suatu kota.
- Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan aplikasi mean dalam kehidupan sehari-hari.

Contoh 6.4 Data Hujan Cerah

Diagram di bawah ini menunjukkan curah hujan kota A dan B. Tentukan kota yang memiliki rata-rata curah hujan lebih tinggi?

Sumber: Dokumen Kemdikbud
Gambar 6.17 Sajian Data Curah Hujan Kota A dan B
Alternatif Penyelesaian:

Rata-rata curah hujan tiap-tiap kota dapat dihitung dengan merata-rata curah hujan antara bulan september sampai dengan bulan februari.

\[
\text{Rata-rata curah hujan di kota A} = \frac{4 + 3,5 + 3,8 + 2,9 + 3,3 + 3,5}{6} = 3,5
\]

\[
\text{Rata-rata curah hujan di kota B} = \frac{3,5 + 3,2 + 2,9 + 3,2 + 3,4 + 3,9}{6} = 3,35
\]

Jadi Kota A mempunyai rata-rata curah hujan lebih tinggi daripada Kota B.

Contoh 6.5

Data Penjualan TV Dalam Satu Bulan

- Pada Contoh 6.5 diberikan salah jenis soal mengenai aplikasi modus dalam data penjualan TV pada suatu toko dalam satu bulan.
- Guru dapat memberikan variasi contoh soal lainnya yang berkaitan dengan aplikasi modus dalam kehidupan sehari-hari.

Contoh 6.5

Data Penjualan TV Dalam Satu Bulan

Berikut ini adalah data penjualan berbagai merk TV berwarna di Toko Elektronik Wawan Jaya Makmur selama bulan Januari.

<table>
<thead>
<tr>
<th>Merek</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

TV berwarna merek apakah yang paling banyak terjual di toko tersebut?

Alternatif Penyelesaian:

Dari data penjualan TV berwarna di Toko Elektronik Wawan Jaya Makmur, dapat dilihat bahwa TV yang paling banyak terjual adalah TV merek C dengan jumlah 8 buah. Angka 8 yang menunjukkan TV yang paling banyak terjual di Toko Elektronik Wawan Jaya Makmur menunjukkan modus dari seluruh data penjualan TV berwarna di toko tersebut selama bulan Januari.
1. Data berikut menunjukkan tinggi badan 20 siswa kelas IX D SMP Ceria.

 154 153 159 165 152 149 154 151 157 158
 154 156 157 162 168 150 153 156 160 154

 a. Urutkan data di atas dari nilai yang terkecil sampai terbesar.
 b. Hitunglah mean, median, dan modus dari data di atas.

 Penyelesaian:

 1. Berikut adalah data tinggi badan 20 siswa yang telah diurutkan dari yang terkecil sampai terbesar

 149, 150, 151, 152, 153, 153, 154, 154, 154, 154, 156, 156, 157, 157, 158, 159, 160, 162, 165, 168

 Mean = 156,1
 Median = 155
 Modus = 154

 2. Perbandingan banyaknya siswa perempuan terhadap siswa laki-laki di kelas tersebut adalah 3:2
Latihan 6.2
Mean, Median, dan Modus

1. Lakukan penilaian sikap saat siswa melakukan kegiatan diskusi dan berbagi.
2. Lakukan penilaian pengetahuan saat siswa mengerjakan kegiatan ayo kita menalar.
3. Indikator semua siswa sudah menguasai konsep adalah ketika siswa kelompok rendah sudah mampu menguasai konsep.
5. Lakukan kegiatan pembelajaran pengayaan dan remedial.

Latihan 6.2
Mean, Median, Modus

1. Sebuah data hasil ulangan harian Matematika kelas IX A menunjukkan, delapan siswa mendapat nilai 95, enam siswa mendapat nilai 85, sepuluh siswa mendapat nilai 80, sembilan siswa mendapat nilai 70, dan tujuh siswa mendapat nilai 65. Tentukan rata-rata nilai ulangan harian Matematika di kelas tersebut.

Penyelesaian:
Rata-rata nilai ulangan harian Matematika siswa di kelas IX A adalah 78,875.

2. Perhatikan dua data berikut ini.
Data X: 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 12
Data Y: 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 16
a. Dapatkan mean, median, dan modus untuk tiap-tiap data X dan Y. (Untuk mean, bulatkan nilainya sampai dua tempat desimal).
b. Jelaskan mengapa mean dari data Y lebih besar dari mean dari data X.
c. Jelaskan mengapa median dari data X sama dengan median dari data Y.

Penyelesaian:
a. Untuk data X: Untuk data Y:
mean = 7,71 mean = 8
median = 8 median = 8
modus = 8 modus = 8

b. Karena terdapat salah satu nilai dari data Y yang lebih besar dari data X, yaitu pada data terakhir setelah diurutkan. Pada data Y nilai data terakhirnya
3. Tabel berikut menunjukkan data pendapatan hasil panen sayur A dan B di Desa Sukamakmur.

<table>
<thead>
<tr>
<th>Bulan</th>
<th>Pendapatan Panen Sayur A (ribuan rupiah)</th>
<th>Pendapatan Panen Sayur B (ribuan rupiah)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>Agustus</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>September</td>
<td>700</td>
<td>900</td>
</tr>
<tr>
<td>Oktober</td>
<td>800</td>
<td>600</td>
</tr>
</tbody>
</table>

Sumber: Dokumen Kemdikbud

Gambar 6.18 Sajian Pendapatan Hasil Panen Sayuran A dan B di Desa Sukamakmur

a. Berapa total pendapatan panen sayur A dan B masing-masing selama 4 bulan?
b. Berapa total pendapatan hasil panen seluruhnya dari kedua sayur selama 4 bulan tersebut?
c. Pada bulan apa terdapat selisih pendapatan terbesar dari panen sayur A dan B?
d. Berapa rata-rata pendapatan dari panen sayur A dan B masing-masing selama 4 bulan?
e. Mengacu pada pendapatan rata-rata dari panen sayur A dan B selama 4 bulan tersebut, menurutmu sayur apa yang sebaiknya disediakan lebih banyak pada Bulan Nopember? Jelaskan.
f. Berapa median dari pendapatan panen sayur A dan B masing-masing selama 4 bulan?
g. Berapa banyak pendapatan dari panen sayur B yang harus diusahakan pada Bulan Nopember agar rata-rata pendapatan hasil panen sayur B selama Bulan Juli sampai Nopember menjadi Rp800.000,00?
Penyelesaian:

a. Total pendapatan panen sayur A adalah Rp2.500.000,00, sedangkan total pendapatan panen sayur B adalah Rp2.600.000,00

b. Rp4.100.000,00

c. Bulan Oktober

d. Rata-rata pendapatan panen sayur A adalah Rp625.000,00, sedangkan rata-rata pendapatan panen sayur B adalah Rp650.000,00

e. Sayur B

f. Median dari pendapatan panen sayur A adalah Rp675.000,00, sedangkan median dari pendapatan panen sayur B adalah Rp650.000,00

g. Rp1.400.000,00

Penyelesaian:

Banyak siswa putra adalah 12, dan banyak siswa putri adalah 18. Banyak siswa di kelas tersebut adalah 30.

5. Tabel berikut ini menunjukkan data nilai ujian IPA siswa kelas IX C.

<table>
<thead>
<tr>
<th>Nilai</th>
<th>Frekuensi</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

b. Berapakah median dan modus data tersebut?
c. Seorang siswa dinyatakan lulus dalam ujian tersebut jika mendapatkan nilai lebih dari atau sama dengan 6, berapa persen siswa yang tidak lulus di kelas IX C?

Penyelesaian:

a. Tidak. Nilai 7 adalah modus dari data tersebut, sedangkan nilai rata-rata ujian IPA di kelas IX C adalah 7,36
b. Median dari data tersebut adalah 7, modus dari data tersebut adalah 7.
c. 10%

Penyelesaian:

Hitung berat badan semua anak. Dari data diketahui bahwa total berat badan Budi dan Charli adalah 140. Substitusikan nilai tersebut, sehingga diperoleh total berat badan Andi dan Dedi adalah 120kg. Jadi rata-rata berat badan Andi dan Dedi adalah 60kg.

![Bar Chart](image)

Sumber: Dokumen Kemdikbud

Gambar 6.19 Sajian Pendapatan Hasil Panen Sayuran A dan B di Desa Sukamakmur

a. Dapatkan mean, median, dan modus dari data di atas. (untuk mean bulatkan sampai nilai satuan terdekat)
b. Apakah pernyataan pemilik toko tersebut benar? Jika salah coba siswa betulkan pernyataan pemilik toko tersebut.

c. Pada Bulan September, pemilik toko ingin menambah stok sepatu olah raga ukuran tertentu yang paling banyak terjual pada bulan sebelumnya, akan tetapi ia belum dapat menentukannya. Dengan menggunakan hasil yang telah siswa dapatkan pada (a), perhitungan manakah yang dapat membantu pemilik toko dalam menyelesaikan permasalahan tersebut? Apakah mean, median, atau modus? Jelaskan jawaban.

Penyelesaian:

a. Mean = 41
 Median = 42
 Modus = 42

b. Sepatu olah raga yang terjual paling banyak (menyatakan modus) adalah ukuran 42

c. Dengan menggunakan modus. Stok sepatu olah raga yang sebaiknya ditambah paling banyak pada Bulan September adalah ukuran 42.

8. Rata-rata dari dua puluh tiga bilangan asli yang berurutan adalah 133. Berapakah rata-rata dari tujuh bilangan yang pertama?

Penyelesaian:

Hitung bilangan pertama dalam susunan bilangan tersebut, diperoleh nilai bilangan pertama adalah 122. Kemudian hitung bilangan kedua sampai ketujuh pada urutan bilangan tersebut. Rata-rata tujuh bilangan pertama pada urutan bilangan tersebut adalah 125.

Proyek 6

1. Pada proyek ini, tiap-tiap siswa diminta untuk melakukan survei perilaku menonton TV siswa satu kelas.
2. Masing-masing siswa diberikan waktu selama seminggu untuk melakukan tugas tersebut.
3. Tugas dituliskan secara rapi pada kertas dan diserahkan kepada guru untuk diberikan penilaian.
5. Minta beberapa orang siswa untuk menceritakan tugas yang telah mereka kerjakan di depan kelas.
Lakukan survei tentang perilaku menonton TV seluruh siswa di kelasmu. Ikuti langkah-langkah kegiatan di bawah ini.

2. Berikutnya lakukan survei mengenai berapa lama tiap-tiap siswa menonton TV setiap harinya (dalam jam). Data lama menonton TV setiap harinya disebut dengan data 2.

4. Buatlah tabel untuk menyajikan data 1, data 2, dan 3 masing-masing.

5. Buatlah diagram yang paling efektif untuk menyajikan data 1, data 2, dan 3 masing-masing.

6. Hitung mean, median, dan modus data 2 dan data 3.

7. Apa yang dapat siswa simpulkan terkait dengan mean data 2 dan mean data 3? Manakah yang lebih besar nilainya?

8. Berikan masukan dan saran kepada teman-teman sekelasmu tentang perilaku menonton TV.

Uji Kompetensi 6 Statistika

- Uji kompetensi digunakan untuk mengetahui kompetensi yang telah dicapai siswa pada bab statistika.
- Jika memungkinkan guru dapat membuat soal lain yang lebih bervariasi untuk Uji Kompetensi.
- Siswa sudah tuntas apabila sudah mencapai nilai diatas 75 dan siswa diberi soal tambahan yang lebih menantang, dan apabila masih kurang dari 75 maka guru melakukan pembelajaran remedial sebelum melanjutkan ke materi berikutnya.

Uji Kompetensi 6 Statistika

1. Diagram batang di bawah ini menunjukkan data banyak anak pada tiap-tiap keluarga di lingkungan RT 5 RW 1 Kelurahan Sukajadi. Sumbu horizontal menunjukkan data banyak anak pada tiap-tiap keluarga, sedangkan sumbu vertikal menyatakan banyaknya keluarga yang memiliki anak dengan jumlah antara 0 sampai dengan 5.

![Diagram Batang](image)

Data Banyak Anak Pada Tiap-Tiap Keluarga Rt 5 Rw 1 Kelurahan Sukajadi

Sumber: Dokumen Kemdikbud

Gambar 6.21 Sajian Data banyak anak pada tiap-tiap keluarga RT 5 RW 1 kelurahan Sukajadi

a. Tentukan total banyaknya keluarga dan banyak anak dalam lingkungan tersebut?
b. Berapa jumlah keluarga yang mempunyai anak lebih dari 2?
c. Berapa persentase keluarga yang tidak mempunyai anak?
d. Berapa rata-rata banyak anak pada setiap keluarga?
e. Berapa median dan modus dari data tersebut?
f. Dalam catatan Pak RT, rata-rata banyak anak pada tiap keluarga menjadi 3 sesudah ada dua puluh keluarga pendatang yang masuk ke dalam lingkungan tersebut. Berapa rata-rata banyak anak pada keduapuluh keluarga pendatang tersebut?
g. Jika terdapat lima keluarga pendatang dan setiap keluarga tersebut memiliki 2 anak, apakah ada perubahan pada mean, median, dan modus? Jika ada tentukan mean, median, dan modus yang baru.

Penyelesaian:
a. Banyak keluarga adalah 40, banyak anak adalah 80
b. 15 keluarga
c. 15 %
d. Rata-rata banyak anak pada tiap keluarga adalah 2
e. Median = 2, Modus = 1
f. 5 anak
g. Ada perubahan pada modus, sedangkan mean dan median tetap. Modus baru = 2.

2. Diagram berikut ini menunjukkan jumlah kebutuhan keluarga Pak Cukup dalam waktu satu bulan.

Diagram Kebutuhan Keluarga Pak Ucup

![Diagram Kebutuhan Keluarga Pak Ucup](source: Dokumen Kemdikbud)

Gambar 6.22 Sajian Data Kebutuhan Keluarga Pak Ucup
Jika penghasilan pak Cukup adalah 4 juta rupiah perbulan dan jumlah pengeluaran untuk tabungan dan lain-lain adalah sama besar, berapa banyak uang yang digunakan untuk kebutuhan makan? Berapa banyak uang yang digunakan untuk transportasi?

Penyelesaian:

Rp2.000.000,00 adalah banyaknya uang yang digunakan oleh Pak Cukup untuk kebutuhan makan, dan Rp1.000.000,00 adalah banyaknya uang yang digunakan oleh Pak Cukup untuk transport.

3. Pak Cukup berpartisipasi dalam program hemat energi, sehingga biaya transportasi berkurang 50% dari biasanya. Jadi berapakah pengeluaran untuk transportasi? Jika 50% penghematan transportasi tersebut digunakan untuk tabungan, berapakah besar tabungan pak Cukup tiap bulannya?

Penyelesaian:

Pengeluaran untuk transportasi saat ini adalah Rp500.000,00. Besar tabungan Pak Cukup tiap bulannya adalah Rp1.000.000,00.

4. Apakah mungkin mean, median, dan modus dalam suatu kumpulan data memiliki nilai yang sama semua? Jika ya, berikan contohnya.

Penyelesaian:

Mungkin. Misalnya jika kumpulan data tersebut terdiri hanya dari 1 nilai saja. Contoh : Data ujian matematika dari 10 siswa kelas IX dan seluruh siswa tersebut mendapatkan nilai 8.

5. Jumlah siswa laki-laki kelas IX A SMP Ceria adalah 16 orang dengan berat badan rata-rata adalah 50 kg. Jelaskan secara singkat langkah-langkah untuk mengukur berat badan ke-16 siswa tersebut?

Penyelesaian:

Jumlahkan seluruh berat badan siswa laki-laki yang berjumlah 16 orang pada kelas tersebut. Setelah diperoleh data jumlah berat badan total seluruh siswa laki-laki di kelas tersebut, bagi nilainya dengan 16.

 a. Sebagian besar siswa laki-laki di kelas tersebut memiliki berat badan tepat 50 kg.
 b. Tepat 50 persen dari siswa laki-laki memiliki berat badan di bawah 50 kg.
c. Median dari data berat badan siswa tersebut adalah 50.
d. Modus dari berat badan siswa tersebut adalah 50.

Penyelesaian:

a. Salah
b. Salah
c. Salah
d. Salah

<table>
<thead>
<tr>
<th>Tahun</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah (kg)</td>
<td>432</td>
<td>330</td>
<td>x</td>
<td>397</td>
<td>365</td>
</tr>
</tbody>
</table>

Penyelesaian: $x = 341$

Penyelesaian: $x = 18,5$

9. Winda telah mengikuti beberapa kali ujian matematika. Jika Winda memperoleh nilai 94 pada ujian yang akan datang, maka nilai rata-rata seluruh ujian matematikanya adalah 89. Tetapi jika ia memperoleh nilai 79 maka nilai rata-rata seluruh ujian matematikanya adalah 86. Dari informasi tersebut, berapa banyak ujian yang telah diikuti oleh Winda sebelumnya?

Penyelesaian:

Banyaknya ujian yang telah diikuti Winda sebelumnya adalah 4.

10. Diketahui data nilai ujian akhir semester siswa kelas IX A SMP Ceria di bawah ini

<table>
<thead>
<tr>
<th>Nilai</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frekuensi</td>
<td>4</td>
<td>8</td>
<td>n</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Jika nilai ujian akhir semester siswa di kelas tersebut memiliki nilai rata-rata 7,5, tentukan nilai median nya.

Penyelesaian:
Dari keterangan yang diketahui pada soal tersebut, didapatkan nilai \(n \) adalah 4. Dengan demikian median dari data tersebut adalah 7.

Penyelesaian:

12. Data berikut ini menunjukkan hasil Ujian Akhir Semester mata pelajaran IPA kelas IX.

<table>
<thead>
<tr>
<th>Nilai</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frekuensi</td>
<td>21</td>
<td>15</td>
<td>20</td>
<td>16</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Jika pihak sekolah memberlakukan aturan bahwa siswa yang memiliki nilai Ujian Akhir Semester lebih dari atau sama dengan nilai rata-rata akan diluluskan, sedangkan siswa yang memiliki nilai di bawah nilai rata-rata tidak lulus, tentukan persentase banyak siswa yang tidak lulus pada Ujian Akhir Sekolah untuk mata pelajaran IPA tersebut (Bulatkan sampai dua tempat desimal).

Penyelesaian:
Hitung nilai rata-rata untuk seluruh siswa, diperoleh nilai rata-rata ujian akhir semester mata pelajaran IPA adalah 6,88. Dengan demikian banyak siswa yang tidak lulus adalah 36 siswa. Persentase siswa yang tidak lulus adalah 42,35%.

Penyelesaian:

\[\text{Data Penjualan Sepeda di Kota X}\]

\[\text{Gambar 6.23 Sajian Data Penjualan Sepeda Motor di Kota X}\]

a. Berapa banyak sepeda merk B yang terjual selama Bulan Maret?

b. Pada bulan apa sepeda merk C terjual lebih banyak daripada sepeda merk B untuk pertama kalinya?

c. Sepeda merk apa yang mengalami peningkatan dan penurunan penjualan paling tinggi pada Bulan Maret? Jelaskan jawaban.

Penyelesaian:

a. 1.800

b. Bulan Mei

c. Peningkatan paling tinggi adalah sepeda merk C dengan peningkatan sebanyak 100 unit. Penurunan paling tinggi adalah sepeda merk A dan B dengan penurunan sebanyak 200 unit.

Penyelesaian:

Banyaknya sepeda merk B yang terjual tiap bulannya, mulai Bulan Februari sampai dengan Bulan Juni, selalu mengalami penurunan sebesar 200 unit tiap bulannya. Dengan demikian, pada Bulan Juli diperkirakan banyaknya sepeda merk B yang terjual adalah sebanyak 1.300 unit.
Pernahkah siswa membatalkan bepergian karena merperkirakan akan terjadi hujan dan ternyata tidak terjadi hujan. Pernahkah siswa mengupas mangga yang terlihat dari kulitnya manis, ternyata rasanya asam. Pernahkah siswa menonton adu tendangan penalti pada pertandingan sepak bola. Ada berapa kemungkinan kejadian dalam tendangan penalti?

Dalam kehidupan sehari-hari kita dihadapkan dalam beberapa kemungkinan kejadian, dimana kita harus memilih. Bab ini membahas tentang peluang dari suatu kejadian.

Kata Kunci
- Ruang Sampel
- Titik Sampel
- Kejadian
- Peluang Empiri
- Peluang Teoretik

Kompetensi dasar
1.1 Menghargai dan menghayati ajaran agama yang dianutnya.
2.2 Memiliki rasa ingin tahu, percaya diri dan ketertarikan pada matematika serta memiliki rasa percaya pada daya dan kegunaan matematika, yang terbentuk melalui pengalaman belajar.
3.9 Menentukan peluang suatu kejadian sederhana secara empirik dan teoretik.
3.13 Memahami konsep ruang sampel suatu percobaan.
4.7 Menerapkan prinsip-prinsip peluang untuk menyelesaikan masalah nyata.

Pengalaman Belajar
1. Menentukan ruang sampel dan titik sampel dari suatu kejadian.
2. Memahami peluang empirik dan peluang teoretik dari suatu kejadian.
3. Menerapkan prinsip-prinsip peluang untuk menyelesaikan masalah.

Sumber: Dokumen Kemdikbud
Peluang

Ruang Sampel, Titik Sampel, Kejadian

Peluang Empirik Dan Peluang Teoretik
Pafnuty Lvovich Chebyshev, lahir 16 Mei 1821, merupakan salah satu anak dari sembilan saudara. Karena cacat yang dimilikinya ia tidak bisa bermain dengan teman-temannya, dan memfokuskan dirinya pada pelajaran.

Setelah menerima gelar professor dari Moscow University, ia berpindah ke St. Petersburg, dimana ia mendirikan sekolah matematika yang paling berpengaruh di Rusia. Chebyshev dikenal untuk karyanya di bidang probabilitas, statistika, mekanika, dan nomor teori. Dia mengembangkan dasar pertidaksamaan dari teori probabilitas, yang disebut Pertidaksamaan Chebyshev. Dengan kontribusinya yang sangat besar dalam matematika ia dianggap sebagai bapak pendiri matematika di Rusia.

Beliau adalah seorang pria yang sepenuhnya setia dengan pekerjaannya. Chebyshev meninggal dunia pada usia 73 tahun. Ia tetap dikenang hingga sekarang dengan teori yang dikenalnya. Untuk menghormati jasanya, di kota St. Petersburg dibangun institut penelitian matematika yang dinamakan Chebyshev.

Berdasarkan uraian di atas dapat kita ambil beberapa hikmah, antara lain:
1. Keterbatasan fisik tidak dapat menghalangi seseorang untuk menuntut ilmu dan menggapai mimpi.
2. Seorang yang belajar matematika dengan sungguh-sungguh dapat menguasai ilmu di bidang lain.
3. Chebyshev dikenang sampai sekarang berkat kontribusinya di ilmu matematika.
A. Ruang Sampel

Pertanyaan Penting

Tanyakan kepada siswa tentang pemahaman mereka mengenai ruang sampel. Ajak siswa berpikir bagaimana untuk mendapatkan ruang sampel.

Pertanyaan Penting

Apa yang dimaksud dengan ruang sampel dan bagaimana mendapatkannya?
Minta siswa mengerjakan beberapa kegiatan berikut agar dapat mengetahui dan memahami jawaban pertanyaan di atas.

Kegiatan 7.1 Mengelompokkan Bulan dalam Kalender Masehi

Tujuan dari kegiatan ini adalah
1. Untuk memberikan pemahaman mengenai kejadian.
2. Untuk memberikan pemahaman mengenai ruang sampel dan titik sampel dari suatu kejadian.

Alat-alat yang diperlukan dapat disiapkan sekolah (jika memungkinkan) atau para siswa yang membawanya dari rumah. Para siswa dibagi menjadi kelompok dengan masing-masing kelompok beranggotakan 3-5 siswa.

Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 7.1. Kemudian ajak siswa untuk menjawab beberapa pertanyaan pada bagian Ayo Kita Amati.

Kegiatan 7.1 Mengelompokkan Bulan dalam Kalender Masehi

Kerjakan kegiatan ini dengan teman sebangkumu. Siapkan kalender Masehi.
a. Berapa banyak bulan dalam satu tahun? Tuliskan semuanya secara berurutan.

\[B = \{ \text{Januari, Februari, Maret, April, Mei, Juni, Juli, Agustus, September, Oktober, November, Desember} \} \]
b. Kelompokkan bulan-bulan tersebut berdasarkan huruf pertamanya.

\{Januari, Juni, Juli\}, \{Februari\}, \{Maret, Mei\}, \{April, Agustus\}, \{September\}, \{Oktober\}, \{November\}, \{Desember\}

Banyaknya kelompok adalah 8 kelompok.

c. Kelompokkan bulan-bulan tersebut berdasarkan huruf terakhirnya.

\{Januari, Februari, Mei, Juni, Juli\}, \{Maret\}, \{April\}, \{Agustus\}, \{September, Oktober, November, Desember\}

Banyaknya kelompok adalah 5 kelompok.

d. Kelompokkan bulan-bulan tersebut berdasarkan banyaknya hari.

\{Januari, Maret, Mei, Juli, Agustus, Oktober, Desember\}, \{Februari\}, \{April, Juni, September, November\}

Banyaknya kelompok adalah 4 kelompok.

e. Kelompokkan bulan-bulan tersebut berdasarkan hari pertamanya.

\{Juli\}, \{September, Desember\}, \{April, Juli\}, \{Januari, Oktober\}, \{Mei\}, \{Agustus\}, \{Februari, Maret, November\}

Banyaknya kelompok adalah 7 kelompok.

f. Kelompokkan bulan-bulan tersebut berdasarkan hari terakhirnya.

\{Agustus, November\}, \{Maret, Juni\}, \{September\}, \{April, Desember\}, \{Juli\}, \{Januari, Februari, Oktober\}, \{Mei\}

Banyaknya kelompok adalah 7 kelompok.

Ayo Kita Amati

1. Berapa banyak bulan yang huruf pertamanya adalah J?
2. Berapa banyak bulan yang huruf terakhirnya adalah I?
3. Berapa banyak bulan yang huruf pertamanya adalah B?
4. Berapa banyak bulan yang terdiri dari 30 hari?
5. Berapa banyak bulan yang terdiri dari 29 hari?
6. Berapa banyak bulan yang hari pertamanya adalah Sabtu?
7. Berapa banyak bulan yang hari terakhirnya adalah Selasa?

Ayo Kita Simpulkan

Pada kegiatan ini himpunan yang beranggotakan nama-nama bulan adalah **ruang sampel**, sedangkan nama-nama bulan tersebut merupakan **titik sampel**. Himpunan bagian yang telah dikelompokkan berdasarkan kondisi atau sifat tertentu seperti “Bulan yang huruf pertamanya adalah J.”, “Bulan yang terdiri dari 31 hari.”, “Bulan yang hari pertamanya adalah Senin” merupakan suatu **kejadian**. Banyaknya titik sampel pada ruang sampel \(S \) dinotasikan dengan \(n(S) \) sedangkan banyaknya titik sampel kejadian \(A \) dinyatakan dengan \(n(A) \).

Ayo Kita Mencoba

Ajak siswa membuat percobaan sederhana kemudian menentukan ruang sampel, titik sampel, dan kejadian.

Contoh: Percobaan melempar dadu.

a. Ruang sampel.

\[S = \{1, 2, 3, 4, 5, 6\} \]

terdapat enam kemungkinan mata dadu yang muncul. Banyaknya titik sampel dari ruang sampel \(S \) adalah 6, sehingga dapat dituliskan \(n(S) = 6 \).

b. Kejadian muncul mata dadu genap.

\[A = \{2, 4, 6\} \]

terdapat tiga mata dadu dengan angka genap. Banyaknya titik sampel dari kejadian \(A \) adalah 3, sehingga dapat dituliskan \(n(A) = 3 \).

Ayo Kita Mencoba

Berikan contoh lain dan tentukan ruang sampel, titik sampel, dan kejadian.

Kegiatan 7.2 Menentukan Ruang Sampel Suatu Eksperimen

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman mengenai ruang sampel dan bagaimana menentukan ruang sampel dari suatu eksperimen.

Kegiatan 7.2

Menentukan Ruang Sampel Suatu Eksperimen

Kerjakan dengan teman sebangkumu.

1. Ambil sebuah uang koin dan kertas karton. Buat kartu dari kertas karton berukuran 5 cm × 5 cm, lalu gambar sisi depan dengan hewan dan belakang dengan buah.
2. Lepmer uang koin dan kartu sebanyak 20 kali, catat hasilnya.
3. Apa bedanya apabila uang koin dan kartu dilempar sebanyak 30 kali?
4. Diskusikan hasilnya dan simpulkan

Ayo Kita Menalar

Pada bagian ini diharapkan siswa dapat menentukan ruang sampel beserta banyaknya titik sampel dengan menggunakan metode diagram larik.

Berdasarkan Kegiatan 7.2, diharapkan siswa dapat menyimpulkan

Banyaknya titik pada diagram larik sama dengan banyaknya titik sampel pada ruang sampel tersebut.

Ayo Kita Menalar

Gunakan kalimat siswa sendiri

Setelah mengamati dan mendiskusikan bersama temannya. Siswa dapat menentukan titik sampel dengan memberikan titik pada diagram larik di samping. Jelaskan dan simpulkan hasilnya._

Sumber: Dokumen Kemdikbud
Keterangan:
- $G = \text{muncul gambar pada uang koin.}$
- $A = \text{muncul angka pada uang koin.}$
- $H = \text{muncul gambar hewan pada kartu.}$
- $B = \text{muncul gambar buah pada kartu.}$

Ayo Kita Menalar

Pada bagian ini siswa diajak melakukan percobaan melempar koin dan dadu bersamaan sebanyak 20 kali. Kemudian menentukan ruang sampel serta menyatakan ruang sampelnya dalam bentuk diagram larik, bentuk tabel, dan bentuk diagram pohon.

Ayo Kita Mencoba

Kerjakan dengan teman sebangku.

1. Ambil sebuah koin dan dadu. Lemparkan koin dan dadu bersama 20 kali, catat hasilnya, lalu gambar dalam diagram larik.

2. Diskusikan hasilnya dengan temannya dan paparkan di depan kelas.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
A & \rightarrow (A, 1) \\
& \rightarrow (A, 2) \\
& \rightarrow (A, 3) \\
& \rightarrow (A, 4) \\
& \rightarrow (A, 5) \\
& \rightarrow (A, 6) \\
G & \rightarrow (G, 1) \\
& \rightarrow (G, 2) \\
& \rightarrow (G, 3) \\
& \rightarrow (G, 4) \\
& \rightarrow (G, 5) \\
& \rightarrow (G, 6)
\end{align*}
\]

Ayo Kita Simpulkan

Ayo Kita Simpulkan

1. Uang koin di samping memiliki dua sisi; yakni, sisi gambar (G) dan sisi angka (A), sedangkan kartu bergambar memiliki dua gambar; yakni, hewan (H) dan buah (B). Jika uang koin dan kartu tersebut dilempar secara bersamaan maka banyaknya titik sampel adalah \(4 = 2 \times 2\).

2. Dadu memiliki enam sisi; yakni angka 1, 2, 3, ..., 6. Jika uang koin dan dadu dilempar secara bersamaan maka banyaknya titik sampel adalah \(12 = 6 \times 2\).

3. Misalkan terdapat dua objek percobaan. Objek pertama memiliki \(n_1\) kemungkinan sedangkan objek kedua memiliki \(n_2\) kemungkinan. Jika dilakukan percobaan dengan dua objek tersebut secara bersamaan maka banyaknya titik sampel adalah \(n_1 \times n_2\).
Ruang sampel: Himpunan semua kemungkinan hasil (outcome) yang bisa muncul dari suatu eksperimen, biasanya dinotasikan dengan S. Banyaknya anggota di S dinotasikan dengan $n(S)$.

Contoh: Pelemparan dadu sebanyak satu kali. Semua kemungkinan hasil yang muncul adalah mata dadu angka 1, 2, 3, 4, 5 dan 6. Sehingga diperoleh $S = \{1, 2, 3, 4, 5, 6\}$ dan $n(S) = 6$.

Titik sampel: Setiap hasil tunggal yang mungkin pada ruang sampel atau dapat juga didefinisikan sebagai semua anggota ruang sampel.

Contoh: Pelemparan dadu sebanyak satu kali. Misalkan kejadian A merupakan kejadian munculnya mata dadu genap. Mata dadu angka ganjil terdiri dari 1, 3 dan 5 sehingga diperoleh $A = \{1, 3, 5\}$ dan $n(A) = 3$.

Misalkan kejadian B merupakan kejadian munculnya mata dadu angka 7, diperoleh $B = \{7\}$. Karena B bukan himpunan bagian dari S maka kejadian B tidak dapat terjadi.

Contoh 7.1

Menentukan Ruang Sampel

Pada Contoh 7.1, siswa diajak untuk menentukan ruang sampel dari percobaan melempar dua koin secara bersamaan.

Menentukan Ruang Sampel

Jika siswa melempar dua koin bersama, ruang sampel yang diperoleh adalah

\[S = GG, GA, AG, AA \]

dimana G berarti muncul gambar dan A berarti muncul angka. Elemen GA di dalam ruang sampel berarti muncul gambar pada koin pertama dan muncul angka pada koin kedua. Bila munculnya gambar dilambangkan dengan 1 dan angka dengan 0 maka ruang sampel ini dapat juga ditulis dalam bentuk pasangan terurut berikut

\[S = \{(1, 1), (1, 0), (0, 1), (0, 0)\} \]
Contoh 7.2 Memilih Pakaian

Pada Contoh 7.2, siswa diajak untuk menentukan ruang sampel dari memilih pakaian yang terdiri dari gaun dan sepatu.

Contoh 7.2 Memilih Pakaian

Dwi akan menghadiri pesta ulang tahun temannya. Dwi ingin datang dengan pakaian yang menawan. Dwi memiliki koleksi 4 gaun dan 5 sepatu. Ruang sampel untuk percobaan memilih pakaian adalah

\[S = \{ (G_1, S_1), (G_1, S_2), (G_1, S_3), (G_1, S_4), (G_1, S_5), \\
(G_2, S_1), (G_2, S_2), (G_2, S_3), (G_2, S_4), (G_2, S_5), \\
(G_3, S_1), (G_3, S_2), (G_3, S_3), (G_3, S_4), (G_3, S_5), \\
(G_4, S_1), (G_4, S_2), (G_4, S_3), (G_4, S_4), (G_4, S_5) \} \]

Banyaknya ruang sampel adalah \(4 \times 5 = 20 \).

Ayo Kita Tinjau Ulang

Pada bagian ini, siswa diajak untuk mengerjakan beberapa soal tambahan yang berdasarkan contoh-contoh sebelumnya namun dengan beberapa perubahan.

Ayo Kita Tinjau Ulang

1. Misalkan terdapat suatu percobaan dengan ruang sampel \(S \) dan kejadian \(A \).
 a. Apakah mungkin \(n(A) < 0 \). Jelaskan analisismu.
 b. Apakah mungkin \(n(A) = 0 \). Jelaskan analisismu.
 c. Apakah mungkin \(n(A) > n(S) \). Jelaskan analisismu.

Penyelesaian:
 a. Tidak mungkin, karena jika \(A \) merupakan suatu kejadian maka \(n(A) \geq 0 \).
 b. Mungkin, ketika \(A \) bukan himpunan bagian dari \(S \).
 c. Tidak mungkin, karena jika \(A \) himpunan bagian dari \(S \) maka \(n(A) \leq n(S) \).
Carilah ruang sampel percobaan berikut.

<table>
<thead>
<tr>
<th>No.</th>
<th>Ruang Sampel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pembuatan maskot sekolah dengan pilihan hewan dan model yang digunakan.</td>
</tr>
<tr>
<td></td>
<td>Maskot Sekolah</td>
</tr>
<tr>
<td></td>
<td>Hewan</td>
</tr>
<tr>
<td></td>
<td>Beruang, Garuda, Singa</td>
</tr>
<tr>
<td>2.</td>
<td>Acara resepsi pernikahan dengan pilihan adat dan waktu.</td>
</tr>
<tr>
<td></td>
<td>Resepsi Pernikahan</td>
</tr>
<tr>
<td></td>
<td>Adat</td>
</tr>
<tr>
<td></td>
<td>Sunda, Jawa, Bali</td>
</tr>
<tr>
<td>3.</td>
<td>Membuat minuman dengan pilihan ukuran gelas dan rasa.</td>
</tr>
<tr>
<td></td>
<td>Membuat Minuman</td>
</tr>
<tr>
<td></td>
<td>Ukuran</td>
</tr>
<tr>
<td></td>
<td>Kecil, Sedang, Besar</td>
</tr>
<tr>
<td>4.</td>
<td>Pemilihan flashdisk pilihan memori dan warna.</td>
</tr>
<tr>
<td></td>
<td>Flashdisk</td>
</tr>
<tr>
<td></td>
<td>Memori</td>
</tr>
<tr>
<td></td>
<td>2 Gb, 4 Gb, 8 Gb, 16 Gb</td>
</tr>
<tr>
<td>5.</td>
<td>Membuat catering dengan pilihan makanan, lauk dan minuman.</td>
</tr>
<tr>
<td></td>
<td>Catering</td>
</tr>
<tr>
<td></td>
<td>Makanan</td>
</tr>
<tr>
<td></td>
<td>Nasi Kuning, Nasi Putih, Mie Goreng, Mie Rebus</td>
</tr>
<tr>
<td></td>
<td>Kostum Badut</td>
</tr>
<tr>
<td></td>
<td>Motif</td>
</tr>
<tr>
<td></td>
<td>2 Gb, 4 Gb, 8 Gb, 16 Gb</td>
</tr>
</tbody>
</table>
7. Misalkan siswa melempar m dadu secara bersamaan. Misalkan S merupakan ruang sampelnya. Berapakah nilai $n(S)$?

Penyelesaian:

- Jika $m = 1$, maka $S = \{1, 2, 3, 4, 5, 6\}$.
 Diperoleh $n(S) = 6$.
- Jika $m = 2$, maka $S = \{(a, b) \mid 1 \leq a \leq 6, 1 \leq b \leq 6\}$.
 Diperoleh $n(S) = 6 \times 6 = 6^2$.
- Jika $m = 3$, maka $S = \{(a, b, c) \mid 1 \leq a \leq 6, 1 \leq b \leq 6, 1 \leq c \leq 6\}$.
 Diperoleh $n(S) = 6 \times 6 \times 6 = 6^3$.

Sehingga dapat disimpulkan $n(S) = 6^m$.

8. Misalkan siswa melempar p dadu dan q uang koin secara bersamaan. Misalkan S merupakan ruang sampelnya. Berapakah nilai $n(S)$?

Penyelesaian: $6^p \times 2^q$

9. **Berpikir Kritis**. Apakah mungkin $n(S) = 0$? Jelaskan analisis.

Penyelesaian:

Tidak mungkin $n(S) = 0$, karena S merupakan ruang sampel dari suatu percobaan maka S bukan merupakan himpunan kosong.

Penyelesaian:

a. Terdapat 2 bulan yang hari pertamanya adalah Selasa, yakni Mei dan Agustus.

b. Terdapat 2 bulan yang hari pertamanya adalah Selasa, yakni Januari dan Oktober.
B. Peluang Teoretik dan Empirik

Pertanyaan Penting
Tanyakan kepada siswa tentang pemahaman mereka mengenai peluang empirik dan teoritik. Ajak siswa berpikir bagaimana untuk mendapatkan peluang empirik dan teoritik.

Pertanyaan Penting
Apa yang dimaksud dengan peluang dan bagaimana menentukan peluang secara teoretik dan empirik?
Kerjakan kegiatan berikut agar siswa dapat mengetahui dan memahami jawaban pertanyaan di atas.

Kegiatan 7.3 Melempar Dadu
Tujuan dari kegiatan ini adalah untuk memberikan pemahaman kepada siswa bagaimana menentukan peluang berdasarkan percobaan secara langsung. Peluang yang diperoleh berdasarkan percobaan langsung disebut dengan peluang empirik.
Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 7.3. Dari kegiatan ini diharapkan siswa dapat menentukan peluang empirik dari suatu percobaan.

Kegiatan 7.3 Melempar Dadu
Kerjakan dengan teman sebangkumu.
 a. Lemparkan dadu sebanyak 60 kali dan mintalah temanmu untuk mencatat mata dadu yang muncul.
 b. Lengkapi tabel berikut:

<table>
<thead>
<tr>
<th>Mata Dadu</th>
<th>Kemunculan (n(A))</th>
<th>Banyak Percobaan (n(S))</th>
<th>(\frac{n(A)}{n(S)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angka 1</td>
<td>(n(A_1) = \ldots)</td>
<td>60</td>
<td>(\frac{n(A_1)}{n(S)} = \ldots)</td>
</tr>
<tr>
<td>Angka</td>
<td>(n(A_i) = \ldots)</td>
<td>(n(S) = 60)</td>
<td>(\frac{n(A_i)}{n(S)} = \ldots)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Angka 2</td>
<td>(n(A_2) = \ldots)</td>
<td>60</td>
<td>(\frac{n(A_2)}{n(S)} = \ldots)</td>
</tr>
<tr>
<td>Angka 3</td>
<td>(n(A_3) = \ldots)</td>
<td>60</td>
<td>(\frac{n(A_3)}{n(S)} = \ldots)</td>
</tr>
<tr>
<td>Angka 4</td>
<td>(n(A_4) = \ldots)</td>
<td>60</td>
<td>(\frac{n(A_4)}{n(S)} = \ldots)</td>
</tr>
<tr>
<td>Angka 5</td>
<td>(n(A_5) = \ldots)</td>
<td>60</td>
<td>(\frac{n(A_5)}{n(S)} = \ldots)</td>
</tr>
<tr>
<td>Angka 6</td>
<td>(n(A_6) = \ldots)</td>
<td>60</td>
<td>(\frac{n(A_6)}{n(S)} = \ldots)</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

- Mata dadu yang paling sering muncul adalah ...
- Mata dadu yang paling jarang muncul adalah ...
- Bandingkan dengan hasil yang diperoleh kelompok lain. Apakah hasilnya sama?
- Jika siswa melakukan percobaan melempar dadu sebanyak 120, apakah hasil pada kolom terakhir tetap sama? Jelaskan analisamu.

Nilai perbandingan pada kolom terakhir disebut dengan **peluang empirik**.

Ayo Kita Simpulkan

Pada bagian ini siswa diharapkan dapat membuat suatu kesimpulan berdasarkan Kegiatan 7.3.

Salah satu kesimpulannya adalah sebagai berikut (jawaban boleh berbeda, asalkan masih benar)

- Peluang empirik adalah suatu peluang yang dapat diperoleh melalui suatu percobaan langsung yang dilakukan secara berulang-ulang dan dalam kondisi yang sama.
- Peluang empirik dari suatu percobaan tidak tetap (bisa berubah), baik dilakukan oleh orang yang sama maupun orang yang berbeda. Hal ini sesuai dengan butir dan f pada Kegiatan 7.3.

Kegiatan 7.4 Permainan Suit Jari

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman kepada siswa bagaimana menentukan peluang secara teoritik atau yang disebut dengan peluang teoritik.

Ajak siswa mengikuti prosedur atau langkah yang ada pada Kegiatan 7.4. Dari kegiatan ini diharapkan siswa dapat menentukan peluang teoritik dari suatu kejadian.

Kegiatan 7.4 Permainan Suit Jari

a. Minta siwa bermain suit jari dengan teman sebangkunya sebanyak 30 kali dan catat hasilnya.

b. Berapa banyak kemungkinan hasil yang terjadi?

Perhatikan tabel di bawah ini. Isilah kotak yang kosong dengan keterangan: “Pemain A Menang”, “Pemain B menang” atau “Seri”.

<table>
<thead>
<tr>
<th></th>
<th>Pemain A</th>
<th>Pemain B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
c. Berapa banyak kemungkinan pemain A bisa memenangkan permainan suit jari?
d. Berapa banyak kemungkinan pemain B bisa memenangkan permainan suit jari?
e. Berapa banyak kemungkinan terjadi seri (kedua pemain tidak ada yang menang)?
f. Diantara pemain A dan pemain B siapakah yang lebih berpeluang untuk memenangkan permainan suit jari?

Selanjutnya dimisalkan:
- $n(S)$ = banyaknya kemungkinan hasil yang terjadi.
- $n(A)$ = banyaknya kemungkinan pemain A menang.
- $n(B)$ = banyaknya kemungkinan pemain B menang.

a. Dari hasil b sampai dengan d, diperoleh

\[n(S) = 9 \quad n(A) = 3 \quad n(B) = 3 \]

b. Selanjutnya diperoleh

\[\frac{n(A)}{n(S)} = \frac{1}{3}, \quad \frac{n(B)}{n(S)} = \frac{1}{3} \]

Nilai perbandingan di atas disebut dengan peluang teoretik.

c. Apakah $\frac{n(A)}{n(S)}$ sama dengan $\frac{n(B)}{n(S)}$? Ya

d. Apa yang dapat siswa simpulkan dari jawaban f dengan jawaban i?

Ayo Kita Simpulkan

Pada bagian ini siswa diharapkan dapat membuat suatu kesimpulan berdasarkan Kegiatan 7.4.

Pada bagian ini diharapkan siswa dapat membuat suatu kesimpulan bahwa peluang teoritik tidak sama dengan peluang empirik.

Misalkan pada Kegiatan 7.4, pemain A menang sebanyak 12 kali, pemain B menang sebanyak 9 kali dan sisanya seri.

Peluang empirik: $P(A) = \frac{12}{30} = \frac{2}{5}$, $P(B) = \frac{9}{30} = \frac{3}{10}$, $P(C) = \frac{9}{30} = \frac{3}{10}$.

Peluang teoritik: $P(A) = P(B) = P(C) = \frac{1}{3}$.

MATEMATIKA 387
a. Berdasarkan Kegiatan 7.4 ini dapat disimpulkan bahwa secara teoretik peluang pemain A menang adalah sama dengan peluang pemain B menang.

b. Setelah melakukan suit sebanyak 30 kali, siapakah yang menjadi pemenang?

c. Dimisalkan
 - $n(S)$ adalah banyaknya titik sampel dari ruang sampel suatu percobaan.
 - $n(A)$ adalah banyaknya titik sampel kejadian A.
 - $P(A)$ adalah peluang secara teoretik kejadian A terjadi.

Maka diperoleh

$$P(A) = \frac{n(A)}{n(S)}$$

d. Berdasarkan butir a dan b, tentukan perbedaan peluang empirik dengan peluang teoretik?

Materi Esensi

Peluang Empirik dan Teoritik

Peluang Empirik adalah peluang yang diperoleh dari suatu percobaan langsung. Percobaan tersebut dilakukan secara berulang-ulang dan dalam kondisi yang sama. Misalkan terdapat percobaan yang dilakukan sebanyak N kali. Dari percobaan tersebut, kejadian A muncul sebanyak $n(A)$ kali. Peluang kejadian secara empirik adalah

$$P(A) = \frac{n}{N}$$

Contoh: Dari pelemparan dadu sebanyak 30 kali, diperoleh mata dadu angka 1 muncul 6 kali, maka peluang secara empirik adalah

$$P(\text{muncul angka }1) = \frac{1}{5}$$

Peluang teoritik adalah peluang yang diperoleh tanpa melalui percobaan langsung. Peluang teoritik merupakan hasil bagi antara banyaknya anggota kejadian A yakni $n(S)$ dengan banyaknya anggota ruang sampel S yakni $n(S)$ dengan

Contoh: Misalkan suatu dadu akan dilemparkan. Ruang sampel S adalah kemungkinan semua mata dadu yang muncul, yakni $S = \{1, 2, 3, 4, 5, 6\}$. Misalkan B merupakan suatu kejadian muncul dadu angka prima, diperoleh $B = \{2, 3, 5\}$. Selanjutnya diperoleh $n(B) = 3$ dan $n(S) = 6$. Peluang secara teoritik muncul angka prima adalah

$$P(B) = \frac{1}{2}$$
Contoh 7.3
Melempar Dadu

Pada Contoh 7.3, siswa diajak untuk menghitung peluang teoritis dari percobaan melempar dua dadu secara bersamaan.

Contoh 7.3
Melempar Dadu

Jika siswa melemparkan dua dadu secara bersamaan, berapakah peluang:

a. Diperoleh dua mata dadu yang sama.

b. Diperoleh dua mata dadu yang jumlahnya adalah 10.

c. Diperoleh dua mata dadu yang jumlahnya merupakan bilangan prima.

Alternatif Penyelesaian:

1. Menentukan ruang sampel:

\[S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), \\
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), \\
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), \\
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), \\
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), \\
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\} \]

Pasangan berurutan (2, 1) menyatakan dadu pertama muncul angka 2 dan dadu kedua muncul angka 1. Banyaknya titik sampel dari ruang sampel adalah \(n(S) = 6 \times 6 = 36 \).

2. Menentukan titik sampel kejadian. Berdasarkan soal, terdapat tiga kejadian:

- \(A_1 \) = Kejadian muncul dua mata dadu yang sama.
- \(A_2 \) = Kejadian muncul dua mata dadu yang jumlahnya adalah 10.
- \(A_3 \) = Kejadian muncul dua mata dadu yang jumlahnya merupakan bilangan prima.

Berdasarkan butir satu, diperoleh

- \(A_1 \) = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}, \(n(A_1) = 6 \).
- \(A_2 \) = \{(4, 6), (5, 5), (6, 4)\}, \(n(A_2) = 3 \).
- \(A_3 \) = \{(1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), \\
(4, 1), (4, 3), (5, 2), (5, 6), (6, 1), (6, 5)\}, \(n(A_3) = 15 \).
3. Menentukan peluang:

\[
P(A_1) = \frac{n(A_1)}{n(S)} = \frac{6}{36} = \frac{1}{6}
\]

\[
P(A_2) = \frac{n(A_2)}{n(S)} = \frac{3}{36} = \frac{1}{12}
\]

\[
P(A_3) = \frac{n(A_3)}{n(S)} = \frac{15}{36} = \frac{5}{12}
\]

Contoh 7.4

Mengambil Satu Bola

Pada Contoh 7.4, siswa diajak untuk menghitung peluang teoritik dari percobaan mengambil bola dari kotak.

Contoh 7.4

Pada Contoh 7.4, siswa diajak untuk menghitung peluang teoritik dari percobaan mengambil bola dari kotak.

Contoh 7.4

Mengambil Satu Bola

Terdapat suatu kotak yang berisikan 3 bola berwarna merah, 5 bola berwarna hijau, 7 bola berwarna biru. Jika siswa mengambil satu bola tentukan

a. Peluang terambil bola berwarna merah.

b. Peluang terambil bola berwarna hijau.

c. Peluang terambil bukan bola merah.

Alternatif Penyelesaian:

Dari soal diperoleh \(n(S) = 3 + 5 + 7 = 15 \).

a. Terdapat 3 bola berwarna merah maka

\[
P(M) = \text{peluang terambil bola berwarna merah}
\]

\[
= \frac{3}{15} = \frac{1}{5}
\]

b. Terdapat 5 bola berwarna hijau maka

\[
P(H) = \text{peluang terambil bola berwarna hijau}
\]

\[
= \frac{5}{15} = \frac{1}{3}
\]

c. Terdapat 12 bola yang tidak berwarna merah maka

\[
P(M') = \text{peluang terambil bukan bola berwarna merah}
\]

\[
= \frac{12}{15} = \frac{4}{5}
\]
Tahukah Kamu?

Pada bagian ini, siswa diajak untuk memahami bagaimana menghitung perluang dari dua kejadian sekaligus.

Tahukah Kamu?

Misalkan terdapat dua kejadian yakni A_1 dan A_2. Jika kejadian A_1 tidak mempengaruhi kejadian A_2 dan juga sebaliknya maka kejadian A_1 dan A_2 disebut dengan kejadian yang saling bebas. Jika kejadian A_1 dan A_2 saling mempengaruhi maka kejadian A_1 dan A_2 disebut dengan kejadian yang tidak saling bebas.

Contoh dua kejadian saling bebas: Misalkan siswa melemparkan dadu sebanyak dua kali, kejadian diperoleh angka 1 pada pelemparan pertama dan kejadian diperoleh angka 3 pada pelemparan kedua.

Contoh dua kejadian tidak saling bebas: Misalkan terdapat kantong yang berisikan 3 kelereng merah, 2 kelereng biru dan 1 kelereng hijau. Siswa mengambil satu kelereng sebanyak dua kali tanpa pengembalian dari kantong tersebut. Kejadian diperoleh kelereng merah pada pengembalian pertama dan kejadian diperoleh kelereng hijau pada pelemparan kedua.

Jika kejadian A_1 dan A_2 merupakan kejadian saling bebas. Peluang kejadian A_1 dan A_2 terjadi adalah

$$P(A_1 \text{ dan } A_2) = P(A_1) \times P(A_2)$$

Secara umum jika kejadian A_1, A_2, \ldots, A_n merupakan kejadian saling bebas. Peluang kejadian A_1, A_2, \ldots, A_n terjadi adalah

$$P(A_1 \text{ dan } A_2 \ldots \text{ dan } A_n) = P(A_1) \times P(A_2) \times \ldots \times P(A_n)$$

Misalkan siswa melemparkan dadu sebanyak dua kali, peluang kejadian diperoleh angka 1 pada pelemparan pertama dan kejadian diperoleh angka 3 pada pelemparan kedua adalah $\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$.

Ayo Kita Tinjau Ulang

Pada bagian ini, siswa diajak untuk mengerjakan beberapa soal tambahan yang berdasarkan Contoh 7.4 namun dengan beberapa perubahan.
Perhatikan kembali Contoh 7.4.

b. Misalkan pada kotak tersebut ditambahkan bola berwarna biru sebanyak 5 buah. Tentukan peluang terambil bola berwarna biru? Apakah peluangnya lebih besar?

d. Dari butir 1 sampai 3, tentukan kesimpulan yang dapat siswa ambil.

Penyelesaian:

a. Jika ditambahkan 3 bola biru maka terdapat $7 + 3 = 10$ bola biru dan terdapat $3 + 5 + 7 + 3 = 18$ bola dalam kotak. Peluang terambil bola berwarna biru adalah $\frac{10}{18} = \frac{5}{9}$ dan nilai peluangnya menjadi lebih besar.

b. Jika ditambahkan 5 bola biru maka terdapat $7 + 5 = 12$ bola biru dan terdapat $3 + 5 + 7 + 5 = 20$ bola dalam kotak. Peluang terambil bola berwarna biru adalah $\frac{12}{20} = \frac{3}{5}$ dan nilai peluangnya menjadi lebih besar.

c. Jika ditambahkan 3 bola merah maka bola biru tetap sebanyak 7 dan terdapat $5 + 7 + 3 = 18$ bola dalam kotak. Peluang terambil bola berwarna biru adalah $\frac{7}{20}$ dan nilai peluangnya menjadi lebih kecil.

d. Jika ditambahkan suatu bola berwarna X maka peluang terambil bola berwarna X semakin besar.

Jika ditambahkan suatu bola berwarna X maka peluang terambil bola berwarna selain X semakin kecil.

Latihan 7.2

Peluang Empirik dan Peluang Teoretik

1. Lemparkan dadu sebanyak 30 kali dan catat hasilnya. Tentukan peluang empirik munculnya masing-masing mata dadu. (Jawaban bisa berbeda dengan temanmu)

2. Lemparkan dadu sebanyak 4 kali dan catat hasilnya.

a. Tentukan peluang empirik munculnya masing-masing mata dadu. (Jawaban bisa berbeda dengan temanmu)
b. Berdasarkan butir a, apakah terdapat peluang yang bernilai 0.

c. Dari butir a dan b, apa yang dapat disimpulkan ketika siswa melempar dadu kurang dari 6 kali?

Penyelesaian:

b. Karena hanya dilempar sebanyak 4 kali, maka terdapat peluang yang bernilai 0.

c. Ketika dadu yang memiliki 6 sisi dilemparkan sebanyak m kali dengan \(m < 6 \) pasti akan terdapat mata dadu yang tidak muncul

3. Budi melempar dua dadu secara bersamaan. Tentukan

a. Peluang muncul angka yang berbeda.

b. Peluang muncul angka ganjil pada kedua dadu.

c. Peluang muncul angka genap pada kedua dadu.

d. Peluang jumlah angka pada kedua dadu lebih dari 12.

Penyelesaian:

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{30}{36} = \frac{5}{6})</td>
<td>(\frac{9}{36} = \frac{1}{4})</td>
<td>(\frac{9}{36} = \frac{1}{4})</td>
<td>0</td>
</tr>
</tbody>
</table>

4. Budi mengerjakan ujian yang terdiri dari 20 soal pilihan ganda, masing-masing soal terdiri dari 4 pilihan jawaban dan hanya terdapat satu jawaban yang benar. Terdapat 5 buah soal yang tidak bisa dikerjakan dan Budi akan memilih jawaban secara acak.

a. Tentukan peluang Budi menjawab 5 soal tersebut dengan benar.

b. Tentukan peluang hanya 4 soal tersebut yang dijawab Budi dengan benar.

Penyelesaian:

Petunjuk: Untuk setiap soal, peluang jawaban Budi benar adalah \(\frac{1}{4} \) sedangkan peluang jawaban Budi salah adalah \(\frac{3}{4} \).

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left(\frac{1}{4} \right)^5)</td>
<td>(5 \times \left(\frac{1}{4} \right)^4 \times \left(\frac{3}{4} \right)), (terdapat 5 kemungkinan soal yang dijawab Budi dengan salah).</td>
</tr>
</tbody>
</table>

a. Tentukan peluang terambil kelereng merah.

b. Tentukan peluang terambil kelereng merah dan biru.

c. Tentukan peluang terambil kelereng bukan biru.

Penyelesaian:

\[
\begin{align*}
\text{a.} & \quad \frac{3}{3+2+1} = \frac{3}{6} = \frac{1}{2} \\
\text{b.} & \quad \frac{3+1}{3+2+1} = \frac{4}{6} = \frac{2}{3} \\
\text{c.} & \quad \frac{3+2}{3+2+1} = \frac{5}{6}
\end{align*}
\]

6. Perhatikan kembali soal nomor 5.

a. Jika ditambahkan kelereng biru dan hijau masing-masing sebanyak lima. Tentukan banyaknya kelereng warna merah yang perlu ditambahkan agar peluang terambil kelereng merah tidak berubah.

b. Jika ditambahkan kelereng merah dan hijau masing-masing sebanyak lima. Tentukan banyaknya kelereng warna biru yang perlu ditambahkan agar peluang terambil kelereng biru tidak berubah.

c. Jika ditambahkan kelereng merah dan biru masing-masing sebanyak lima. Tentukan banyaknya kelereng warna hijau yang perlu ditambahkan agar peluang terambil kelereng hijau tidak berubah.

Penyelesaian:

Petunjuk:

\[
\begin{align*}
\text{a.} & \quad \text{Peluang terambil kelereng merah} = \frac{1}{2} \\
& \quad \frac{3+m}{6+5+5+m} = \frac{1}{2} \\
& \quad m = 10, \text{banyaknya kelereng merah yang perlu ditambahkan adalah sebanyak 10.} \\
\text{b.} & \quad \text{Peluang terambil kelereng biru} = \frac{1}{6} \\
& \quad \frac{1+b}{6+5+5+b} = \frac{1}{6} \\
& \quad b = 2, \text{banyaknya kelereng biru yang perlu ditambahkan adalah sebanyak 2.}
\end{align*}
\]
c. Peluang terambil kelereng hijau = \(\frac{1}{3} \)

\[
\frac{2 + h}{6 + 5 + 5 + h} = \frac{1}{2}
\]

\(h = 12 \), banyaknya kelereng hijau yang perlu ditambahkan adalah sebanyak 12.

\[
P(A_1 \text{ dan } A_2) = P(A_1) \times P(A_2)
\]

\[
= \frac{2}{9} \times \frac{3}{9} = \frac{6}{81} = \frac{2}{27}
\]

dengan: - \(P(A_1) \) = peluang diperoleh kelereng merah.

- \(P(A_2) \) = peluang diperoleh kelereng hijau.

Tentukan kesalahan yang dilakukan Budi.

Penyelesaian:

Percobaan diatas merupakan kejadian tidak saling bebas, karena bola pada pengambilan pertama tidak dikembalikan. Sehingga Budi tidak bisa menggunakan rumus \(P(A_1 \text{ dan } A_2) = P(A_1) \times P(A_2) \).

8. Terdapat kantong yang berisi 12 bola: tiga berwarna merah, empat berwarna hijau, dan lima berwarna biru. Misalkan siswa melakukan mengambil satu bola pengambilan dengan pengambilan sebanyak dua kali. Tentukan peluang:

a. Terambil bola merah pada pengambilan pertama dan kedua.

b. Terambil bola merah pada pengambilan pertama dan bola hijau pada pengambilan kedua.

c. Terambil bola hijau pada pengambilan pertama dan kedua.

d. Terambil bola merah pada pengambilan pertama dan bukan bola biru pada pengambilan kedua.

Penyelesaian:

a. \(\frac{1}{4} \times \frac{1}{4} = \frac{1}{16} \)

b. \(\frac{1}{4} \times \frac{1}{3} = \frac{1}{12} \)

c. \(\frac{1}{3} \times \frac{1}{3} = \frac{1}{9} \)

d. \(\frac{1}{4} \times \frac{7}{12} = \frac{7}{48} \)
9. Ana dan Budi bermain suit sebanyak dua kali. Tentukan peluang:
 a. Ana menang dua kali.
 b. Budi menang dua kali.
 c. Ana menang pada suit pertama dan tidak kalah pada suit kedua.

Penyelesaian:
 a. \[
 \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}
 \]
 b. \[
 \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}
 \]
 c. \[
 \frac{1}{3} \times \frac{2}{3} = \frac{2}{9}
 \]
 (Tidak kalah bisa berarti menang atau seri)

10. Terdapat dua macam dadu. Dadu pertama berwarna merah dan yang lain berwarna biru. Dua dadu tersebut akan dilemparkan secara bersamaan. Tentukan peluang:
 a. Angka yang muncul pada dadu merah lebih besar dari angka yang muncul pada dadu biru.
 b. Angka yang muncul pada dadu merah merupakan dua kali lipat angka yang muncul pada dadu biru.
 c. Angka yang muncul pada dadu merah merupakan faktor/pembagi dari angka yang muncul pada dadu biru.

Penyelesaian:
 Petunjuk: Nyatakan ruang sampel dalam bentuk tabel.
 a. \[
 \frac{15}{36} = \frac{5}{12}
 \]
 b. \[
 \frac{3}{36} = \frac{1}{12}
 \]
 c. \[
 \frac{14}{36} = \frac{7}{18}
 \]
1. Terdapat kode yang terdiri dari empat karakter. Tiga karakter pertama merupakan angka dan karakter terakhir merupakan huruf kapital. Tentukan banyaknya password yang dapat dipilih.

Penyelesaian: \(10^3 \times 26 = 26.000\)

2. Pak Donny tinggal di kota \(A\) dan akan bepergian ke kota \(B\). Pak Donny tidak langsung menuju kota \(B\) karena harus menjemput temannya di kota \(C\). Terdapat 4 pilihan jalur dari kota \(A\) menuju kota \(C\) dan terdapat 5 pilihan jalur dari kota \(C\) menuju kota \(B\). Tentukan banyaknya pilihan jalur dari kota \(A\) menuju kota \(B\).

Penyelesaian: \(4 \times 5 = 20\)

 a. Tentukan berapa banyak kemungkinan dua huruf tersebut.

 b. Tentukan peluang Wina memasukkan password yang benar pada percobaan pertama.

Penyelesaian:

 a. \(52 \times 52 = 2.704\)

 b. \(\frac{1}{2.704}\)

Soal nomor 4, 5 dan 6 berdasarkan cerita berikut.

Penyelesaian:

(Ana, Ani, Ane), (Ana, Ane, Ani), (Ani, Ana, Ane), (Ani, Ane, Ani), (Ane, Ana, Ani), (Ane, Ani, Ana)

5. Tentukan peluang Ana mendapatkan giliran pertama.

Penyelesaian: \(\frac{2}{6} = \frac{1}{3} \)

6. Tentukan peluang Ani mendapatkan giliran setelah Ane.

Penyelesaian: \(\frac{2}{6} = \frac{1}{3} \)

 a. Tentukan peluang siswa menjawab benar.
 b. Apakah mengeliminasi pilihan A dan D mempengaruhi peluang siswa menjawab dengan benar?

Penyelesaian:
 a. \(\frac{1}{2} \)
 b. Iya, karena banyaknya kemungkinan jawaban menjadi lebih sedikit.

Penyelesaian: \(\left(\frac{1}{4} \right)^5 \)

9. Diketahui satu set kartu bridge yang berisi 52 kartu. Dari kartu-kartu tersebut, akan diambil satu buah kartu secara acak. Tentukan peluang terambilnya:
 a. Kartu As
 b. Kartu berwarna merah
 c. Kartu bergambar hati
 d. Kartu bernomor 5
 e. Kartu bergambar raja

Buku Guru Kelas IX SMP/MTs
Penyelesaian:

a. \(\frac{4}{52} = \frac{1}{13} \)

b. \(\frac{26}{52} = \frac{1}{2} \)

c. \(\frac{26}{52} = \frac{1}{2} \)

d. \(\frac{4}{52} = \frac{1}{13} \)

10. Suatu lomba melukis di SMP Ceria diikuti oleh siswa kelas VII sampai dengan kelas IX. Berikut adalah banyak siswa yang mengikuti lomba tersebut berdasarkan tingkatan kelas:

- 15 siswa kelas VII
- 17 siswa kelas VIII
- 18 siswa kelas IX

Jika pada lomba tersebut akan dipilih satu peserta yang menjadi juara utama, berapa peluang siswa kelas VIII akan menjadi juara utama?

\[\text{Penyelesaian: } \frac{17}{15 + 17 + 18} = \frac{17}{50} \]

\[\text{Penyelesaian: } \frac{6}{25} \]

12. Sebuah uang koin dilemparkan sebanyak 3 kali. Berapakah peluang sisi angka muncul tepat 2 kali?

\[\text{Penyelesaian: } \frac{3}{8} \]

 Keterangan: Tiga bilangan \(a, b, c \) adalah barisan naik jika \(a < b < c \).
Penyelesaian:
Petunjuk: Tuliskan semua kemungkinan dalam pasangan berurutan.

\[(1, 2, 3), (1, 2, 4), \ldots, (4, 5, 6)\]

Banyaknya pasangan berurutan adalah 20 sehingga peluangnya adalah \(\frac{20}{6^5} = \frac{5}{54}\).

Keterangan: Tiga bilangan \(a, b, c\) adalah barisan turun jika \(a > b > c\).

Penyelesaian:
Petunjuk: Tuliskan semua kemungkinan dalam pasangan berurutan.

\[(3, 2, 1), (4, 2, 1), \ldots, (6, 5, 4)\]

Banyaknya pasangan berurutan adalah 20 sehingga peluangnya adalah \(\frac{20}{6^5} = \frac{5}{54}\).

15. Berpikir kritis. Apa yang dapat siswa simpulkan dari jawaban soal nomor 13 dan 14? Kenapa peluangnya sama?

Untuk soal nomor 15 sampai 19 perhatikan kalimat berikut.

Terdapat tiga dadu yang berwarna merah, hijau, dan biru. Tiga dadu tersebut dilemparkan secara bersamaan.

Penyelesaian:
Peluangnya sama barisan naik diubah menjadi barisan turun dengan menukarkan angka pertama dengan angka ketiga. Contoh:

\[(1, 2, 3) \rightarrow (3, 2, 1)\]

16. Tentukan peluang angka yang muncul pada dadu merah ditambah dengan angka yang muncul pada dadu hijau sama dengan angka yang muncul pada dadu biru.

Penyelesaian:
Petunjuk:

- \(2 = 1 + 1\)
- \(3 = 1 + 2 = 2 + 1\)
- \(4 = 1 + 3 = 2 + 2 = 3 + 1\)
- \(5 = 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1\)
- \(6 = 1 + 5 = 2 + 4 = 3 + 3 = 4 + 2 = 5 + 1\)
Peluangnya adalah \(\frac{15}{6^2} = \frac{5}{72} \)

17. Tentukan peluang angka yang muncul pada dadu merah dikurangi dengan angka yang muncul pada dadu hijau sama dengan angka yang muncul pada dadu biru.

Penyelesaian:

Petunjuk:
- 1 = 2 – 1 = 3 – 2 = 4 – 3 = 5 – 4 = 6 – 5
- 2 = 3 – 1 = 4 – 2 = 5 – 3 = 6 – 4
- 3 = 4 – 1 = 5 – 2 = 6 – 3
- 4 = 5 – 1 = 6 – 2
- 5 = 6 – 1

Peluangnya adalah \(\frac{15}{6^2} = \frac{5}{72} \)

18. Tentukan peluang angka yang muncul pada dadu merah dikali dengan angka yang muncul pada dadu hijau sama dengan angka yang muncul pada dadu biru.

Penyelesaian:

Petunjuk:
- 1 = 1 \times 1
- 2 = 1 \times 2 = 2 \times 1
- 3 = 1 \times 3 = 3 \times 1
- 4 = 1 \times 4 = 2 \times 2 = 4 \times 1
- 5 = 1 \times 5 = 5 \times 1
- 6 = 1 \times 6 = 2 \times 3 = 3 \times 2 = 6 \times 1

Peluangnya adalah \(\frac{14}{6^2} = \frac{7}{108} \)

19. Tentukan peluang angka yang muncul pada dadu merah ditambah dengan angka yang muncul pada dadu hijau sama dengan dua kali lipat angka yang muncul pada dadu biru.
Penyelesaian:

(Dadu merah, dadu biru, dadu hijau) = (1, 1, 1), (1, 2, 3), (1, 3, 5), (2, 2, 2), (2, 3, 4), (2, 4, 6), (3, 2, 1), (3, 3, 3), (3, 4, 5), (4, 3, 2), (4, 4, 4), (4, 5, 6), (5, 3, 1), (5, 4, 3), (5, 5, 5), (6, 4, 2), (6, 5, 4), (6, 6, 6)

Peluangnya adalah \(\frac{18}{6^2} = \frac{1}{12} \)

20. Tentukan peluang dari kejadian berikut:
 a. Muncul dua mata dadu yang sama ketika melemparkan dua dadu bersamaan.
 b. Muncul tiga mata dadu yang sama ketika melemparkan tiga dadu bersamaan.
 c. Muncul \(m \) mata dadu yang sama ketika melemparkan \(m \) dadu bersamaan.

Penyelesaian:
 a. \(\frac{6}{6^2} = \frac{1}{6} \)
 b. \(\frac{6}{6^3} = \frac{1}{6^2} \)
 c. \(\frac{6}{6^m} = \frac{1}{6^{m-1}} \)
Jika siswa melihat radar, siswa akan berpikir untuk apa radar tersebut. Radar (yang dalam bahasa Inggris merupakan singkatan dari Radio Detection and Ranging, yang berarti deteksi dan penjarakan radio) adalah suatu sistem gelombang elektromagnetik yang berguna untuk mendeteksi, mengukur jarak dan membuat map benda-benda seperti pesawat terbang dan berbagai kendaraan bermotor. Visualisasi yang ditampilkan oleh radar untuk menyampaikan informasi di atas adalah berupa koordinat. Yang menjadi permasalahannya adalah bagaimana cara menghitung jarak dengan informasi yang telah diperoleh dari radar tersebut.

Untuk itu dalam bab ini akan dibahas mengenai cara menghitung jarak antara dua titik pada bidang kartesius.

1. Menggunakan bidang kartesius untuk menentukan posisi titik.
2. Menggunakan bidang kartesius untuk menentukan jarak antar dua titik.
Bidang Kartesius

- Pengantar Bidang Kartesius
- Jarak Dua Titik
Descartes dikenal sebagai Renatus Cartesius dalam literatur berbahasa Latin, merupakan seorang filsuf dan matematikawan Perancis. Ia mempersembahkan sumbangan yang paling penting yaitu penemuannya tentang geometri analitis, yang akhirnya telah terkenal sebagai pencipta “Sistem koordinat Kartesius”, yang memengaruhi perkembangan kalkulus modern dan menyediakan jalan buat Newton menemukan Kalkulus. Ia memberikan kontribusi yang besar dalam kemajuan di bidang matematika, sehingga dia dipanggil sebagai “Bapak Matematika Modern”.

Descartes, adalah salah satu pemikir paling penting dan berpengaruh dalam sejarah barat modern. Metodenya ialah dengan meragukan semua pengetahuan yang ada, yang kemudian mengantarkannya pada kesimpulan bahwa pengetahuan yang ia kategorikan ke dalam tiga bagian dapat diragukan, yaitu yang berasal dari pengalaman inderawi dapat diragukan, fakta umum tentang dunia semisal api itu panas dan benda yang berat akan jatuh juga dapat diragukan, dan prinsip-prinsip logika dan matematika juga ia ragukan. Dari keraguan tersebut, Descrates hendak mencari pengetahuan apa yang tidak dapat diragukan yang akhirnya mengantarkan pada premisnya Cogito Ergo Sum yang artinya “aku berpikir maka aku ada”.

Sumber: www.edulens.org

Hikmah yang bisa diambil

1. Keyakinan yang sempurna dan mutlak terhadap keberadaan adanya Tuhan, dan semua obyek di dunia ini adalah ciptaan Tuhan.
2. Tidak mudah puas terhadap sesuatu yang sudah didapatkan, sehingga terus berfikir melakukan inovasi untuk menemukan sesuatu yang baru.
3. Manusia diciptakan oleh Tuhan dengan bentuk yang sempurna, oleh karena itu manusia harus menggunakan akal dan pikirannya untuk memanfaatkan lingkungan dengan sebaik-baiknya.
4. Saling membantu dan kerja sama sesama manusia agar terjadi interaksi yang positif dalam melakukan aktifitas dan belajar.
A. Pengantar Bidang Kartesius

Minta siswa menggambarkan lokasi suatu tempat pada bidang kartesius?

Kegiatan 8.1 Bentuk Bidang Kartesius

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan
1. kertas berpetak
2. penggaris dan
3. gunting

Setelah kegiatan ini siswa diharapkan memahami tentang
1. daerah-daerah pada bidang kartesius dan
2. cara menggambarkan pasangan bilangan pada bidang koordinat

untuk itu siswa harus melakukan Ayo kita amati, ayo kita simpulkan.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai dua hal tersebut yaitu daerah-daerah pada bidang koordinat dan cara menggambarkan pasangan bilangan pada bidang kartesius.

Kegiatan 8.1 Bentuk Bidang Kartesius

Kerjakan dengan teman sebangku.

a. Siapkan dua lembar kertas berpetak.

b. Berilah label pada kertas berpetak pertama dan kedua masing-masing dengan huruf x dan y.

c. Di tengah-tengah kertas berpetak dengan label x, buatlah garis bilangan horizontal seperti yang ditunjukkan pada gambar di bawah ini. Di tengah-tengah kertas berpetak dengan label y, buatlah garis bilangan vertikal.
d. Potong garis bilangan vertikal dan tempel pada bilangan garis horizontal sehingga nol saling berimpitan dan garis horizontal dan vertikal saling tegak lurus.

Ayo Kita Amati

a. Berapa banyak daerah yang terbentuk? Beri tanda 1 s/d banyaknya daerah dengan urutannya dari kanan atas kemudian bergerak berlawanan arah jarum jam. (Daerah-daerah ini selanjutnya disebut sebagai kuadran; yaitu kuadran 1, kuadran 2, dst) **Penyelesaian:** Empat

b. Gambarkan titik perpotongan antara garis vertikal dan horizontal.

c. Jelaskan letak titik pada bagian (b) terhadap garis horizontal. **Penyelesaian:** di bilangan nol

d. Jelaskan letak titik pada bagian (b) terhadap garis vertikal. **Penyelesaian:** di bilangan nol

(Titik pada bagian (b) disebut sebagai titik asal dan dapat ditulis sebagai pasangan bilangan (letak terhadap garis horizontal, letak titik pada garis vertikal)).

Ayo Kita Simpulkan

Berdasarkan kegiatan di atas:

1. Bagaimana membentuk bidang kartesius?
2. Berapa banyak kuadran pada bidang kartesius? Gambarkan. **Penyelesaian:** Empat
3. Tuliskan posisi titik asal sebagai pasangan bilangan. **Penyelesaian:** perpotongan antara sumbu horizontal dan vertikal

Kegiatan 8.2 Mendeskripsikan Titik Pada Bidang Kartesius

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan kertas berpetak.

Setelah kegiatan ini siswa diharapkan memahami tentang mengenai hubungan antara daerah pada bidang koordinat.

untuk itu siswa harus melakukan Ayo kita mencoba, ayo kita simpulkan.
Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai hubungan antara daerah pada bidang koordinat.

Kegiatan 8.2
Mendeskripsikan Titik Pada Bidang Kartesius

Kerjakan dengan teman sebangkumu, gunakan lembaran kerjamu pada kegiatan 8.2.

Ayo Kita Mencoba

Kegiatan 8.2.a. Tempatkan titik pada posisi akhir dari langkah-langkah berikut ini
Langkah 1. Mulailah dari titik asal (0, 0)
Langkah 2. Bergeraklah 2 satuan ke kanan
Langkah 3. Bergeraklah 3 satuan ke atas
Dalam bentuk pasangan bilangan, posisi akhir dari Langkah 1 sampai dengan langkah 3 adalah (2, 3).

Kegiatan 8.2.b. Tempatkan titik pada posisi akhir dari langkah-langkah berikut ini
Langkah 1. Mulailah dari titik asal (0, 0)
Langkah 2. Bergeraklah 2 satuan ke kanan
Langkah 3. Bergeraklah 3 satuan ke bawah
Dalam bentuk pasangan bilangan, posisi akhir dari Langkah 1 sampai dengan langkah 3 adalah (2, -3).

Kegiatan 8.2.c. Tempatkan titik pada posisi akhir dari langkah-langkah berikut ini
Langkah 1. Mulailah dari titik asal (0, 0)
Langkah 2. Bergeraklah 2 satuan ke kiri
Langkah 3. Bergeraklah 3 satuan ke atas
Dalam bentuk pasangan bilangan, posisi akhir dari Langkah 1 sampai dengan langkah 3 adalah (-2, 3).

Kegiatan 8.2.d. Tempatkan titik pada posisi akhir dari langkah-langkah berikut ini
Langkah 1. Mulailah dari titik asal (0, 0)
Langkah 2. Bergeraklah 2 satuan ke kiri
Langkah 3. Bergeraklah 3 satuan ke bawah
Dalam bentuk pasangan bilangan, posisi akhir dari Langkah 1 sampai dengan langkah 3 adalah (-2, -3).

Berdasarkan kegiatan di atas:

1. Bagaimana menggambarkan titik pada bidang kartesius apabila diketahui posisi titik berupa pasangan bilangan? Tuliskan langkah-langkahnya. **Petunjuk:** Arahkan jawabannya ke materi esensi pada subbab ini

2. Bagaimana menentukan posisi titik pada bidang kartesius? Tuliskan langkah-langkahnya. **Petunjuk:** Arahkan jawabannya ke materi esensi pada subbab ini

Untuk selanjutnya **bilangan pertama** pada pasangan bilangan untuk posisi titik di bidang kartesius dinamakan sebagai **absis** dan **bilangan kedua** dinamakan sebagai **ordinat**. Untuk selanjutnya **garis horizontal** pada bidang kartesius dinamakan sebagai **Sumbu-X** dan garis vertikalnya dinamakan sebagai **Sumbu-Y**.

Kegiatan 8.3

Sifat titik pada bidang kartesius terhadap kuadrannya

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan kertas berpetak.

Setelah kegiatan ini siswa diharapkan memahami tentang mengenai hubungan antara daerah pada bidang koordinat untuk itu siswa harus melakukan Ayo kita mencoba, ayo kita simpulkan.

Kegiatan 8.3

Sifat titik pada bidang kartesius terhadap kuadrannya

Minta siswa mengerkajaman dengan teman sebangkunya. Gunakan lembaran kerja pada Kegiatan 8.3.

Ayo Kita Menalar

Tempatkan titik-titik pada bidang koordinat berikut (1, 2), (-1, -2), (1, -2), dan (-1, 2) pada bidang kartesius. Terletak pada kuadran berapakah titik-titik tersebut? Bagaimana tanda (positif atau negatif) absis dan ordinat titik-titik tersebut? Jika siswa meletakkan titik lain yang terletak pada kuadran yang sama dengan titik-titik tersebut, apakah tandanya akan sama dengan titik tersebut? Jelaskan dan simpulkan mengenai sifat dari absis dan ordinat pada kuadran tersebut.
Ayo Kita Simpulkan

Berdasarkan kegiatan di atas, jelaskan sifat-sifat titik yang berada pada kuadran 1, kuadran 2, kuadran 3, dan kuadran 4.

Kegiatan 8.4 Menggambar Titik Pada Bidang Kartesius

Minta siswa mengerjakan dengan teman sebangku, gambar dan hubungkan titik untuk membuat bangun. Deskripsikan dan warnai gambar ketika siswa mendapatkannya.

<table>
<thead>
<tr>
<th>1(10, 11)</th>
<th>2(8, 13)</th>
<th>3(6, 14)</th>
<th>4(4, 13)</th>
<th>5(2, 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6(-2, 4)</td>
<td>7(-5, 3)</td>
<td>8(-7, -1)</td>
<td>9(-3, 2)</td>
<td>10(-1, 1)</td>
</tr>
<tr>
<td>11(-1, -3)</td>
<td>12(0, -6)</td>
<td>13(-2, -8)</td>
<td>14(1, -7)</td>
<td>15(1, -8)</td>
</tr>
<tr>
<td>16(0, -9)</td>
<td>17(0, -10)</td>
<td>18(1, -9)</td>
<td>19(2, -10)</td>
<td>20(2, -9)</td>
</tr>
<tr>
<td>21(3, -10)</td>
<td>22(3, -9)</td>
<td>23(2, -8)</td>
<td>24(2, -7)</td>
<td>25(5, -7)</td>
</tr>
<tr>
<td>26(6, -6)</td>
<td>27(6, -8)</td>
<td>28(5, -9)</td>
<td>29(5, -10)</td>
<td>30(6, -9)</td>
</tr>
<tr>
<td>31(7, -10)</td>
<td>32(7, -9)</td>
<td>33(8, -10)</td>
<td>34(8, -9)</td>
<td>35(7, -8)</td>
</tr>
<tr>
<td>36(7, -6)</td>
<td>37(8, -4)</td>
<td>38(10, 2)</td>
<td>39(13, -1)</td>
<td>40(13, 1)</td>
</tr>
<tr>
<td>41(12, 3)</td>
<td>42(9, 5)</td>
<td>43(7, 6)</td>
<td>44(7, 9)</td>
<td>45(8, 10)</td>
</tr>
</tbody>
</table>

Sumber: Dokumen Kemendikbud
Gambar 8.1 Deskripsi titik koordinat
1. Bagaimana siswa menggambarkan lokasi suatu titik pada bidang kartesius?

Buatlah pertanyaan yang memuat kata “kartesius” dan “kuadran”.

Pengantar Bidang Koordinat

Langkah menggambarkan pasangan bilangan \((a, b)\) ke bidang koordinat

Langkah 1. Mulailah dari titik asal \((0, 0)\)

Langkah 2. Jika \(a \geq 0\) maka gerakkan \(|a|\) satuan kekanan dan jika \(a < 0\) maka gerakkan \(|a|\) satuan kekiri

Langkah 3. Jika \(b \geq 0\) maka gerakkan \(|b|\) satuan keatas dan jika \(b < 0\) maka gerakkan \(|b|\) satuan kekiri

Langkah 4. Titik akhir dari Langkah 1 sampai dengan Langkah 3 merupakan posisi titik koordinat

Ide Kunci:

Bidang koordinat dibentuk oleh irisan dari garis bilangan horizontal dan vertical. Bilangan garis ini berimpitan pada di titik yang disebut titik asal dan membagi bidang kartesius kedalam empat bagian yang disebut dengan kuadran.

Gambar 8.3 Pembagian koordinat dari bidang koordinat
Pasangan bilangan digunakan untuk menyatakan letak dari titik dalam bidang kartesius. Misalnya (2,3) seperti yang terlihat pada gambar diatas.

Contoh 8.1

Identifikasi Pasangan Bilangan

Pada contoh siswa diharapkan dapat merepresentasikan suatu titik pada bidang kartesius ke pasangan bilangan.

Contoh 8.1

Identifikasi Pasangan Bilangan

Pasangan bilangan yang mana yang berhubungan dengan titik C?

A(4, 5) B(-4, 5) C(4, -5) D(-4, -5)

Alternatif Penyelesaian:

Diketahui : Gambar titik koordinat
Ditanya : Posisi titik C
Jawab :

Gambar 8.2 Gambar titik koordinat

Contoh 8.2
Menggambarkan Pasangan Bilangan

Pada contoh siswa diharapkan dapat merepresentasikan pasangan bilangan kedalam bidang kartesius.

Gambarkan titik (a) (-1, 2) dan (b) $(0, -\frac{4}{2})$ pada bidang kartesius. Deskripsikan letak dari setiap titik.

Alternatif Penyelesaian:

Diketahui : titik (a) (-1, 2) dan (b) $(0, -\frac{4}{2})$

Ditanya : Deskripsikan letak setiap titik

Jawab :

 Langkah 2. Gerakkan 1 satuan ke kiri
 Langkah 3. Gerakkan 2 satuan keatas.

b. Lalu gambar titiknya. Jadi titik berada pada kuadran II.
 Langkah 1. Mulai dengan titik asal.
 Langkah 2. Gerakkan 0 satuan ke kanan
 Langkah 3. Gerakkan $4\frac{1}{2}$ satuan ke bawah

Contoh 8.3
Aplikasi Kehidupan Nyata

Pada bagian ini siswa diharapkan dapat menggali informasi dari data dengan cara menggambarkan data tersebut tersebut kedalam bidang kartesius.
Contoh 8.3

Aplikasi Kehidupan Nyata

Ayo Kita Gali Informasi

Tabel di bawah ini menunjukkan perubahan kedalaman suatu sungai tiap jam, mulai dari tengah malam hingga jam 8 pagi.

<table>
<thead>
<tr>
<th>Jam, x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kedalaman dikurangi 100 cm, y</td>
<td>0 cm</td>
<td>60 cm</td>
<td>70 cm</td>
<td>50 cm</td>
<td>40 cm</td>
<td>30 cm</td>
<td>20 cm</td>
<td>40 cm</td>
<td>60 cm</td>
</tr>
</tbody>
</table>

a. Gambarlah data di atas dalam satu grafik
b. Buat tiga pengamatan dari grafik tersebut

Alternatif Penyelesaian:

Diketahui : Tabel di atas

Ditanya :

a. Gambarlah data di atas dalam satu grafik
b. Buat tiga pengamatan atas grafik tersebut

Jawab :

a. Tulis data di atas menjadi pasangan bilangan yaitu (0, 100), (1, 160), (2, 170), (3, 150), (4, 140), (5, 130), (6, 120), (7, 140) dan (8, 160). Gambar dan beri label untuk setiap pasangan bilangan. Kemudian hubungkan pasangan bilangan dengan garis.

Gambar 8.3 Gambar titik koordinat untuk data
b. Berikut tiga kemungkinan pengamatan:
 - Kedalaman sungai berkurang dari jam 02.00 malam hingga jam 06.00 pagi
 - Kedalaman sungai bertambah dari jam 00.00 sampai dengan jam 02.00 pagi dan jam 06.00 sampai dengan jam 08.00 pagi.
 - Pertambahan kedalaman sungai terbesar terjadi pada 00:00 hingga 01:00 pagi.

Pada bagian ini siswa diharapkan lebih mengerti mengenai contoh-contoh yang telah diberikan diatas dengan cara melakukan latihan-latihan ini. Pada soal nomor 1 siswa diharapkan lebih mengerti mengenai letak titik pada kuadran. Pada soal nomor 2 siswa dilatih untuk menggali informasi dari data.

1. Berdasarkan Contoh 8.1 didapatkan koordinat titik C. misalkan jawabanmu adalah \((a, b)\). Gambarkan titik-titik \((a, -b), (-a, -b)\) dan \((-a, b)\). Deskripsikan letak titik-titik tersebut! Buatlah garis yang menghubungkan titik-titik tersebut! Di koordinat manakah garis-garis tersebut memotong Sumbu-\(X\) dan Sumbu-\(Y\)?

2. Tabel di bawah ini menunjukkan perubahan suhu tiap jam mulai dari tengah hari hingga jam 6 malam.

<table>
<thead>
<tr>
<th>Jam setelah tengah malam, (x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur, (y)</td>
<td>4°F</td>
<td>6°F</td>
<td>5°F</td>
<td>1°F</td>
<td>0°F</td>
<td>0°F</td>
<td>-6°F</td>
</tr>
</tbody>
</table>

a. Gambarlah data di atas pada suatu grafik
b. Buat tiga pengamatan atas grafik tersebut

Mintalah siswa untuk menyelesaikan soal latihan dan di bahas di kelas dengan menunjuk salah satu siswa, sedang siswa yang lain di minta menanggapi dengan santun. Begitu seterusnya untuk nomor soal lainnya.
Latihan 8.1
Pengantar Bidang Kartesius

1. Tiga dari Empat titik yang dinyatakan dalam koordinat berikut memiliki sifat yang sama. Tentukan titik yang memiliki sifat yang berbeda dengan yang lainnya dan berikan alasannya!
 i. (-2, 1), (-4, 5), (2, -3) dan (-1, 3)
 ii. (1, 2), (-2, 4), (3, 6) dan (5, 7)
 iii. (1, -3), (2, -7), (5, 6) dan (4, -4)
 iv. (-3, -6), (-4, -7), (-5, -8) dan (-1, 1)

Penyelesaian:
 i. (2,-3), tiga titik lainnya berada pada kuadran II
 ii. (-2,4), tiga titik lainnya terletak pada kuadran I
 iii. (5,6), tiga titik lainnya terletak pada kuadran IV
 iv. (-1,1), tiga titik lainnya terletak pada kuadran III

2. Gambarkan dan hubungkan titik-titik di bawah ini untuk membentuk suatu bangun.
 1(7, 1) 2(4, -2) 3(4, -1) 4(2, -1) 5(-1, -1)
 6(-1, 1) 7(-1, 3) 8(2, 3) 9(4, 3) 10(4, 4)

3. Tulis koordinat yang berhubungan terhadap titik di bawah ini
 i. titik A
 vi. titik B
 ii. titik C
 vii. titik D
 iii. titik E
 viii. titik F
 iv. titik G
 ix. titik H
 v. titik I
 x. titik J
Penyelesaian:

i. \((-4, 4)\) \quad vi. \((3, 4)\)

ii. \((-4, -2)\) \quad vii. \((5, -3)\)

iii. \((8, 6)\) \quad viii. \((-6, 2)\)

iv. \((9, -2)\) \quad ix. \((-7, -3)\)

v. \((6, 2)\) \quad x. \((2, -2)\)

4. Gambarkan segi banyak dengan titik sudut yang diberikan.

i. \(A(6, 8), B(8, 3), C(2, 1)\)

ii. \(D(1\frac{1}{2}, 3), E(6, 6), F(5, 2)\)

iii. \(G(\frac{1}{2}, 6), H(\frac{1}{2}, 10), J(4, 10), K(4, 6)\)

iv. \(L(1, 5), M(1, 8), N(7, 8), P(7, 5)\)

v. \(Q(-2, 5), R(8, 9), S(5, 5), T(8, 3), U(3, 1)\)

vi. \(V(-1, 1), W(0, 6\frac{1}{2}), X(5, 6\frac{1}{2}), Y(7, 3), Z(4, -1)\)

5. Deskripsikan kesalahan dari solusi berikut

i. Menggambarkan (7, 6) pada bidang kartesius, mulai dari (0, 0) dan bergerak 7 satuan kekanan dan 6 satuan keatas.

ii. Menggambarkan (-7, -5) pada bidang kartesius, mulai dari (0, 0) dan bergerak 7 satuan kekanan dan 5 satuan kebawah.

Penyelesaian:

i. Tidak ada yang error

ii. Yang benar adalah mulai dari (0, 0) dan bergerak 7 satuan kekiri dan 5 satuan kebawah.

i. \((2, -4), (8, -4)\) \quad iv. \((-8, -3), (6, -3)\)

ii. \((5, 4), (5, -1)\) \quad v. \((-5, 4), (7, 4)\)

iii. \((-2, 1), (-2, 9)\) \quad vi. \((-3, -3), (-3, 5)\)

Penyelesaian:

i. Karena ordinatnya adalah sama, maka jaraknya adalah selisih abisnya yaitu \(8 - 2 = 6\).

ii. Karena abisnya adalah sama, maka jaraknya adalah selisih ordinatnya yaitu \(4 - (-1) = 5\).
iii. Karena absisnya adalah sama, maka jaraknya adalah selisih ordinatnya yaitu $9 - 1 = 8$.

iv. Karena ordinatnya adalah sama, maka jaraknya adalah selisih absisnya yaitu $6 - (-8) = 14$.

v. Karena ordinatnya adalah sama, maka jaraknya adalah selisih absisnya yaitu $7 - (-5) = 12$.

vi. Karena absisnya adalah sama, maka jaraknya adalah selisih ordinatnya yaitu $5 - (-3) = 8$.

7. Tentukan bentuk segiempat $ABCD$ dengan titik koordinatnya
 i. $A(0, 5), B(0, 1), C(6, 1)$ dan $D(6, 5)$
 ii. $A(0, 5), B(-2, 1), C(0, -3)$ dan $D(2, 1)$

 Penyelesaian:
 i. Persegi panjang
 ii. Belah ketupat

 Penyelesaian:

Buatlah bidang koordinat dengan arah utara selatan sebagai Sumbu-Y dan arah timur barat sebagai Sumbu-X. Dimisalkan orang I berada pada koordinat $(0,0)$. Kemudian karena orang II berada pada arah jam 01.30 dan sejauh 10 meter dari orang I maka orang II terletak pada $5\sqrt{2}$ ke utara dan $5\sqrt{2}$ ke timur dari orang I. Dengan demikian letak koordinat dari orang II adalah $(5\sqrt{2}, 5\sqrt{2})$. Sedangkan orang III berada pada arah jam 10.30 dan sejauh 8 meter dari orang II maka orang III terletak pada $4\sqrt{2}$ ke utara dan $4\sqrt{2}$ ke barat dari orang II. Dengan demikian letak koordinat dari orang III adalah $(\sqrt{2}, 9\sqrt{2})$.

Petunjuk untuk orang I: bergerak ke depan sejauh $9\sqrt{2}$ dan ke kanan sejauh $\sqrt{2}$.
9. Seorang anak pada pagi hari dari rumah pergi ke sekolahnya dengan bersepeda. Untuk mencapai sekolahnya dia harus bergerak ke arah tenggara sejauh 4 km kemudian ke arah timur sejauh 2 km. Pada saat pulang sekolah anak tersebut pergi ke toko buku. Untuk kesana anak tersebut harus menuju ke arah barat daya sejauh 1 km dan ke arah barat sejauh 0.5 km. Gambarlah letak dari rumah, sekolah dan toko buku pada bidang kartesius. Kemudian bagaimana caranya anak tersebut supaya tiba lagi dirumah?

Penyelesaian:
Buatlah bidang koordinat dengan arah utara selatan sebagai Sumbu-Y dan arah timur barat sebagai Sumbu-X. Dimisalkan rumah berada pada koordinat (0,0). Kemudian karena sekolah berada pada arah tenggara sejauh 4 km kemudian ke arah timur sejauh 2 km dari rumah maka sekolah terletak pada \(2\sqrt{2}\) ke selatan dan \(2 + 2\sqrt{2}\) ke timur dari rumah. Dengan demikian letak koordinat dari sekolah adalah \((2 + 2\sqrt{2}, -2\sqrt{2})\). Sedangkan toko buku berada pada arah barat daya sejauh 1 km dan ke arah barat sejauh 0.5 km dari sekolah maka toko buku terletak pada \(\frac{1}{2}\sqrt{2}\) ke selatan dan \(\frac{1}{2} + \frac{1}{2}\sqrt{2}\) ke barat dari sekolah. Dengan demikian letak koordinat dari toko buku adalah \((1\frac{1}{2} + 1\frac{1}{2}\sqrt{2}, -2\frac{1}{2}\sqrt{2})\). Supaya siswa tersebut kembali lagi ke rumah maka haruslah berjalan ke selatan sejauh \(2\frac{1}{2}\sqrt{2}\) dan ke timur sejauh \(1\frac{1}{2} + 1\frac{1}{2}\sqrt{2}\).

10. Tabel di bawah ini menunjukkan jauhnya lari dalam kilometer pada 18 minggu untuk program latihan marathon.

<table>
<thead>
<tr>
<th>Minggu</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total kilometer</td>
<td>20</td>
<td>40</td>
<td>70</td>
<td>90</td>
<td>120</td>
<td>150</td>
<td>180</td>
<td>210</td>
<td>240</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minggu</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total kilometer</td>
<td>270</td>
<td>310</td>
<td>350</td>
<td>390</td>
<td>430</td>
<td>470</td>
<td>500</td>
<td>530</td>
<td>540</td>
</tr>
</tbody>
</table>

a. Tuliskan tabel untuk jarak lari selama setiap minggu latihan.
b. Tampilkan data dari bagian (a) dalam grafik.
c. Buatlah tiga pengamatan grafik

d. Jelaskan pola yang ditunjukkan dalam grafik

Penyelesaian:
a. Tabel jarak lari setiap minggu latihan

<table>
<thead>
<tr>
<th>Minggu</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarak kilometer</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minggu</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarak kilometer</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>

b.

![Diagram jarak lari](image)

Minggu ke-

- Jarak lari konstan atau tetap pada minggu ke-5 hingga ke-10 dan juga terjadi pada minggu ke-11 hingga ke-15.
- Jarak lari berkurang pada minggu ke-4 dan minggu ke-18.
- Jarak lari terbesar terjadi pada minggu ke-11 hingga ke-15

d. Pola yang ditunjukkan dalam grafik adalah sering terjadinya jarak lari yang konstan dan kadang-kadang terjadi penurunan dan penambahan jarak lari.
B. Jarak

Pertanyaan Penting

Berikan penjelasan pada siswa mengenai jarak pada bidang kartesius (jangan diberikan mengenai rumus jarak terlebih dahulu). Pada bagian ini diberikan kegunaan dari penghitungan jarak tersebut.

Sebelum masuk pada kegiatan siswa diharapkan mengingat kembali Teorema Phytagoras.

Pertanyaan Penting

Bagaimana cara menentukan jarak antara dua titik pada bidang kartesius?

Ingin Kembali !!!

Teorema Phytagoras

Misalkan segitiga siku-siku ABC seperti yang tampak pada Gambar 8.4 dengan sisi miringnya adalah AC maka berlaku persamaan berikut

$AC^2 = AB^2 + BC^2$

dengan AC, AB, BC berturut-turut menyatakan panjang garis dari AC, AB dan BC.

Gambar 8.4 Segitiga siku-siku

Kegiatan 8.5 Jarak Antara Dua Titik Pada Bidang Kartesius

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan

1. kertas berpetak 2 lembar
2. penggaris dan
3. gunting
Setelah kegiatan ini siswa diharapkan dapat menurunkan rumus jarak antara dua titik pada bidang kartesius.
untuk itu siswa harus melakukan Ayo kita menalar, Ayo kita amati, Ayo kita simpulkan untuk memancing pemikiran siswa mengenai rumus jarak.
Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai rumus jarak antara dua titik pada bidang kartesius.

Kegiatan 8.5

Jarak Antara Dua Titik Pada Bidang Kartesius

1. Siapkan 2 lembar kertas berpetak.
3. Tuliskan dua titik sembarang pada kertas pertama dengan syarat dua titik tersebut tidak mempunyai absis maupun ordinat yang sama, misalkan terlihat pada Gambar 8.5.
4. Gambarkan dua titik sedemikian hingga dua titik tersebut dan titik A dan B merupakan titik sudut persegiapanjang (lihat Gambar 8.5).
5. Potonglah kertas berpetak tersebut dengan mengikuti gambar persegiapanjang yang telah terbentuk.

Gambar 8.5 Contoh gambar di kertas pertama
7. Ambillah salah satu segitiga dan tempatkan titik \(A \) pada titik pusat koordinat kertas kedua dengan salah satu sisi yang tidak menghubungkan titik \(A \) dan \(B \) berimpit ke salah satu sumbu. Untuk contohnya dapat dilihat pada Gambar 8.6.

![Gambar 8.6 Contoh gambar di kertas kotak kedua](image)

Ayo Kita Amati

Berdasarkan kegiatan di atas

1. Perhatikan koordinat titik-titik sudut segitiga tersebut.
2. Geserlah segitiga pada langkah 7 dan perhatikan koordinat titik-titik sudut segitiga.

Ayo Kita Menalar

Apa yang dapat siswa analisis dari pergeseran segitiga siku-siku yang siswa lakukan pada kegiatan di atas? (Hubungkan analisismu dengan terjadinya perubahan koordinat pada tiap titik sudut segitiga siku-siku tersebut).

Petunjuk: Arahkan jawabannya ke materi esensi.

Ayo Kita Simpulkan

Berdasarkan kegiatan di atas, simpulkan rumus untuk menentukan jarak antara dua titik pada bidang kartesius. **Petunjuk:** Arahkan jawabannya ke materi esensi.
Kegiatan 8.6 Menentukan Jarak Pada Sebuah Peta

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan fotocopy peta pada kegiatan ini.

Setelah kegiatan ini siswa diharapkan memahami tentang penentuan jarak dengan menggunakan bidang koordinat.

untuk itu siswa harus melakukan Ayo kita amati, Ayo kita gali informasi.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai penentuan jarak dengan menggunakan bidang koordinat.

Kegiatan 8.6 Menentukan Jarak Pada Sebuah Peta

Ayo Kita Amati

Minta siwa mengerjakan dengan teman sebangkumu, setiap kotak pada peta Gambar 8.7 merepresentasikan satu kilometer.

Sumber: Dokumen Kemdikbud

Gambar 8.7 Peta Kota

b. Berapa jarak antara perpustakaan umum dan Alun-alun? \(\sqrt{3^2 + 0^2} = 3 \)

Kegiatan 8.7 Menggambar Persegipanjang

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan kertas berpetak.

Setelah kegiatan ini siswa diharapkan memahami tentang aplikasi jarak dalam penentuan panjang sisi pada persegi panjang yang digambarkan pada bidang koordinat.

untuk itu siswa harus melakukan Ayo kita mencoba.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai penentuan panjang sisi pada persegi panjang yang digambarkan pada bidang koordinat.

Kemudian setelah kegiatan ini lakukan diskusi dan berbagi mengenai subbab ini. Lihat bagian Diskusi dan Berbagi dan berikan stimulus kepada siswa untuk bertanaya (bagian Silakan Bertanya).

Kegiatan 8.7 Menggambar Persegipanjang

Minta siswa mengerjakan dengan teman sebangkunya,

1. Gambar dan labelkan setiap kelompok titik pada bidang kartesius berikut.
2. Hubungkan setiap titik untuk membentuk segiempat.
3. Analisis panjang sisi-sisinya dan jenis segiempat yang terbentuk.

Kelompok titik pertama : \(A(2, 3), B(2, 10), C(6, 10), D(6, 3)\)
Kelompok titik kedua : \(E(-2, -6), F(2, 6), G(6, 2), H(-6, -2)\)
Gambar 8.8 Bidang kartesius untuk menggambar persegi

1. Bagaimana siswa menentukan jarak antara dua titik pada sebuah bidang kartesius?
 Petunjuk: Arahkan ke materi esensi.

2. Apakah metode yang siswa gunakan untuk menentukan jarak pada Kegiatan 8.5?
 Penyelesaian: Teorema Phytagoras.

 a. Arkeolog
 b. Kapten Kapal
 c. Pilot

Buatlah pertanyaan yang timbul di benak siswa tentang jarak pada bidang kartesius.

Materi Esensi

Pada bagian ini jelaskan pada siswa mengenai penentuan jarak antara dua titik dengan langkah-langkah penentuannya.
Materi Esensi

Jarak

Untuk menentukan jarak antara dua titik pada bidang koordinat dapat dilakukan dengan melakukan langkah-langkah sebagai berikut

Langkah 1: tentukan koordinat dari kedua titik tersebut, misalkan koordinat dari dua titik tersebut adalah \((x_1, y_1)\) dan \((x_2, y_2)\).

Langkah 2: Hitung jarak dari dua titik tersebut dengan menggunakan rumus berikut ini

\[
\text{jarak} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}
\]

Contoh 8.4

Jarak Dua Titik

Pada bagian ini siswa diharapkan dapat menggali informasi dari data dengan cara menggambarkan data tersebut tersebut kedalam bidang kartesius.

Contoh 8.4

Jarak Dua Titik

Misalkan koordinat titik A adalah (2, 5) dan koordinat titik B adalah (8, 13). Hitung jarak antara titik A dan B!

Alternatif Penyelesaian:

Diketahui : koordinat titik A adalah (2, 5) dan koordinat titik B adalah (8, 13).

Ditanya : hitung jarak antara titik A dan B

Jawab :

Langkah 1: Menentukan koordinat; yaitu, didapat \((x_1, y_1) = (2, 5)\) dan \((x_2, y_2) = (8, 13)\)

Langkah 2: Menggunakan rumus yaitu

\[
AB = \sqrt{(2-8)^2 + (5-13)^2}
\]
\[
= \sqrt{(-6)^2 + (-8)^2}
\]
\[
= \sqrt{36 + 64}
\]
\[
= \sqrt{100}
\]
\[
= 10
\]

Jadi jarak antara titik A dan B adalah 10 satuan.
Contoh 8.5

Menentukan Keliling

Dengan membaca contoh ini diharapkan siswa dapat menerapkan rumus jarak untuk menentukan keliling dari suatu persegi panjang.

Contoh 8.5

Menentukan Keliling

Titik-titik sudut persegi panjang adalah \(A(3, 5), B(3, 2), C(9, 2),\) dan \(D(9, 5)\). Gambarkan persegi panjang pada bidang kartesius dan tentukan kelilingnya.

Alternatif Penyelesaian:

Diketahui : Titik sudut persegi panjang adalah \(A(3, 5), B(3, 2), C(9, 2),\) dan \(D(9, 5)\)

Ditanya : Gambarkan persegi panjang pada bidang kartesius dan tentukan kelilingnya.

Jawab :

Gambar persegi panjang pada bidang kartesius dapat dilihat pada gambar 8.9

Panjang persegi panjang adalah jarak antara \(A(3, 5)\) dan \(D(9, 5)\); yaitu, beda absis.

\[
\text{Panjang} = 9 - 3 = 6 \text{ satuan}
\]

Lebar persegi panjang adalah jarak antara \(A(3, 5)\) dan \(B(3, 2)\); yaitu, beda koordinat-y.

\[
\text{Lebar} = 5 - 2 = 3 \text{ satuan}
\]

Jadi keliling persegi panjang adalah \(2(6) + 2(3) = 18\) satuan.
Contoh 8.6
Aplikasi Kehidupan Nyata

Dengan membaca contoh ini diharapkan siswa dapat menerapkan rumus jarak pada aplikasi kehidupan nyata yaitu dalam hal ini penentuan luas dari kebun binatang.

Contoh 8.6
Aplikasi Kehidupan Nyata

Ayo Kita Gali Informasi

Diketahui sebuah kebun binatang berbentuk trapesium. Jika kebun binatang ini digambarkan pada bidang kartesius, maka koordinat titik-titik sudutnya adalah $A(3, 5)$, $B(3, 2)$, $C(9, 2)$, dan $D(7, 5)$. Koordinat ini diukur dalam satuan dekameter. Hitunglah luas kebun binatang tersebut!

Alternatif Penyelesaian:

Diketahui : sebuah kebun binatang berbentuk trapesium. Jika kebun binatang ini digambarkan pada bidang kartesius maka koordinat dari titik-titik sudutnya adalah $A(3, 5)$, $B(3, 2)$, $C(9, 2)$, dan $D(7, 5)$.

Ditanya : Hitunglah luas kebun binatang

Jawab :

Gambar dan hubungkan titik-titik sudut pada bidang kartesius untuk membentuk sebuah trapesium. Dengan menggunakan koordinat dapat ditentukan panjang alas dan tinggi.

\[b_1 = 7 - 3 = 4 \]
\[b_2 = 9 - 3 = 6 \]
\[h = 5 - 2 = 3 \]

Gunakan rumus untuk luas trapesium.

\[A = \frac{1}{2} (h)(b_1 + b_2) = \frac{1}{2} (3)(4 + 6) = 15 \]

Jadi luas kebun binatang adalah 15 dekameter persegi.
1. Pada Contoh 8.4 bagaimana jarak antara titik A dan B jika koordinat titik A adalah (-2, -5) dan koordinat titik B adalah (5, 13)?

2. Pada Contoh 8.5 bagaimana luas segiempat jika titik C terletak pada koordinat (5, 2)? **Petunjuk:** Gunakan rumus segi empat.

3. Apa yang terjadi pada luas kebun binatang pada Contoh 8.6 jika titik B diganti menjadi (1, 2)? **Petunjuk:** Gunakan rumus segi empat.

Latihan 8.2

Jarak

Mintalah siswa untuk menyelesaikan soal latihan dan di bahas di kelas dengan menunjuk salah satu siswa, sedang siswa yang lain di minta menanggapi dengan santun. Begitu seterusnya untuk nomor soal lainnya.

 Penyelesaian:

2. Gambarkan dan beri label untuk setiap pasang titik pada bidang kartesius. Tentukan panjang garis yang menghubungkan kedua titik.
 - i. $C(0, 1), D(8, 1)$
 - ii. $K(5, 2), L(5, 6)$
 - iii. $Q(3, 4), R(3, 9)$

3. Gambarkan dan hitung keliling segi banyak dengan titik sudut yang diberikan.
 - i. $A(6, 7), B(8, 2), C(2, 0)$ (segi banyak ABC)
 - ii. $D(1 \frac{1}{2}, 2), E(6, 5), F(5, 1)$ (segi banyak DEF)
iii. $G(2 \frac{1}{2}, 4), H(2 \frac{1}{2}, 8), J(6, 8), K(6, 4)$ (segi banyak $GHJK$)

iv. $L(4, 2), M(4, 5), N(10, 5), P(10, 2)$ (segi banyak $LMNP$)

v. $Q(1, 4), R(11, 8), S(8, 4), T(11, 2), U(6, 0)$ (segi banyak $QRSTU$)

vi. $V(3, 2), W(4, 7 \frac{1}{2}), X(9, 7 \frac{1}{2}), Y(11, 4), Z(8, 0)$ (segi banyak $VWXYZ$)

Penyelesaian:

i. $|AB| = \sqrt{29}, |BC| = \sqrt{40}, |CA| = \sqrt{65}, \text{Keliling} = \sqrt{29} + \sqrt{40} + \sqrt{65}$

ii. $|DE| = \sqrt{29,25}, |EF| = \sqrt{17}, |FA| = \sqrt{13,25}, \text{Keliling} = \sqrt{29,25} + \sqrt{17} + \sqrt{13,25}$

iii. $|GH| = 4, |HI| = 3,5, |JK| = 4, |KG| = 3,5, \text{Keliling} = 15$

iv. $|LM| = 3, |MN| = 6, |NP| = 3, |PL| = 6, \text{Keliling} = 21$

v. $|QR| = \sqrt{116}, |RS| = 5, |ST| = \sqrt{13}, |TU| = \sqrt{29}, |UQ| = \sqrt{41}, \text{Keliling} = \sqrt{116} + 5 + \sqrt{13} + \sqrt{29} + \sqrt{41}$

vi. $|VW| = \sqrt{31,25}, |WX| = 5, |XY| = \sqrt{16,25}, |YZ| = 5, |ZV| = \sqrt{29}, \text{Keliling} = \sqrt{31,25} + 10 + \sqrt{16,25} + \sqrt{29}$

4. Tentukan keliling segiempat $CDEF$ dengan titik sudut yang diberikan

 i. $C(2, 1), D(2, 4), E(5, 4), F(5, 1)$

 ii. $C(2, 2), D(8, 2), E(8, 8), F(2, 8)$

 iii. $C(1, 2), D(6, 2), E(6, 5), F(1, 5)$

 iv. $C(4, 0), D(4, 9), E(9, 9), F(9, 0)$

Penyelesaian:

 i. $|CD| = 3, \quad \quad \quad |DE| = 3, \quad \quad \quad |EF| = 3, \quad \quad \quad |FG| = 3, \quad \quad \quad \text{Keliling} = 18$

 ii. $|CD| = 6, \quad \quad \quad |DE| = 6, \quad \quad \quad |EF| = 6, \quad \quad \quad |FG| = 6, \quad \quad \quad \text{Keliling} = 24$

 iii. $|CD| = 5, \quad \quad \quad |DE| = 3, \quad \quad \quad |EF| = 5, \quad \quad \quad |FG| = 3, \quad \quad \quad \text{Keliling} = 16$

 iv. $|CD| = 9, \quad \quad \quad |DE| = 5, \quad \quad \quad |EF| = 9, \quad \quad \quad |FG| = 5, \quad \quad \quad \text{Keliling} = 28$

5. Tentukan luas segi banyak dengan titik sudut yang diberikan pada soal nomor 4.

 Penyelesaian:

 i. Luas = 9

 ii. Luas = 36
iii. Luas = 15
iv. Luas = 45

 i. (1, 2), (2, 3), (3, 5), (4, 5)
 ii. (1, 2), (2, 4), (3, 6), (4, 10)
 iii. (1, -2), (2, -4), (3, -8), (4, 16)
 iv. (1, -3), (-2, -4), (-6, -6), (-11, -6)
 v. (1, 0), (2, 5), (3, 9), (4, 13)

Penyelesaian:
 i. (1, 2), (2, 3), (3, 4), (4, 5)
 ii. (1, 2), (2, 4), (3, 6), (4, 8)
 iii. (1, -2), (2, -4), (3, -8), (4, -16)
 iv. (1, -3), (-2, -4), (-6, -5), (-11, -6)
 v. (1, 1), (2, 5), (3, 9), (4, 13)

7. Diketahui titik A(1, 2) dan B(7, t). Jika jarak antara titik A dan B adalah 10, tentukan nilai t!

Penyelesaian:

\[|\overline{AB}| = 10 \]

Didapatkan

\[6^2 + (t - 2)^2 = 100 \]

atau

\[(t - 2)^2 = 64 \]

Jadi

\[t - 2 = \pm 8 \]

Maka

\[t = 10 \text{ atau } t = -6 \]

8. Gambarkan segi banyak pada bidang kartesius dengan kondisi yang diberikan.
 i. Persegi dengan keliling 16 satuan panjang.
 ii. Persegi panjang dengan luas 12 satuan luas.
 iii. Persegi panjang dengan keliling 24 satuan panjang.
 iv. Segitiga dengan luas 18 satuan luas.
9. Perhatikan Gambar 8.10

\[\begin{array}{c|c|c|c|c|c|c|c|c} & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline 1 & & & & & & & & & \\ \hline 2 & & & & & & & & & \\ \hline 3 & & & & & & & & & \\ \hline \end{array} \]

Gambar 8.10 Titik-titik pada bidang kartesius

Dapat dilihat pada Gambar 8.10 terdapat 3 titik. Tentukan titik keempat sehingga dapat dibuat suatu persegi panjang yang titik-titik sudutnya merupakan keempat titik tersebut!

Penyelesaian:

Titik keempatnya adalah (-3, -3)

10. Tentukan luas segiempat yang titik sudutnya diberikan sebagai berikut:

 a. \(D(1, \ 1), \ E(1, \ -2), \ F(-2, \ -2), \ G(-2, \ 1) \) (segiempat yang terbentuk adalah segiempat \(DEFG \))

 b. \(P(-2, \ 3), \ Q(5, \ 3), \ R(5, \ -1), \ S(-2, \ -1) \) (segiempat yang terbentuk adalah segiempat \(PQRS \))

 c. \(W(-3, \ 2), \ X(2, \ 2), \ Y(2, \ -7), \ Z(-3, \ -7) \) (segiempat yang terbentuk adalah segiempat \(WXYZ \))

Penyelesaian:

a. Persegi, Luas = 12

b. Persegi Panjang, Luas = 28

c. Persegi, Luas = 20

Carilah peta kecamatan atau desa anda yang di dalamnya terdapat peta persawahan atau daerah yang berbentuk seperti persawahan. Kemudian gambarlah daerah tersebut pada bidang kartesius. Selanjutnya hitunglah luas daerah tersebut.
Uji Kompetensi 8
Bidang Kartesius

Mintalah siswa untuk menyelesaikan soal latihan dan di bahas di kelas dengan menunjuk salah satu siswa, sedang siswa yang lain di minta menanggapi dengan santun. Begitu seterusnya untuk nomor soal lainnya.

Uji Kompetensi 8
Bidang Kartesius

1. Gambarkan segi banyak dengan titik sudut yang diberikan pada bidang kartesius.
 i. \(A(6, 2), B(7, 6), C(9, 4) \)
 ii. \(D(5, 4), E(7, 8), F(10, 8), G(8, 4) \)

2. Tiga dari Empat titik yang dinyatakan dalam koordinat berikut memiliki sifat yang sama. Tentukan titik yang memiliki sifat yang berbeda dengan yang lainnya dan berikan alasanmu!
 a. \((1, 1), (4, 16), (3, 9)\) dan \((2, 6)\)
 b. \((2, 6), (3, 8), (4, 12)\) dan \((6, 18)\)
 c. \((1, -1), (2, -1), (3, -1)\) dan \((4, 1)\)
 d. \((-1, 2), (-2, 4), (-3, 6)\) dan \((-1, 1)\)

Penyelesaian:
 a. \((2, 6)\), karena \(2^2 \neq 6\)
 b. \((3, 8)\), karena \(3 \times 3 \neq 8\)
 c. \((4, 1)\), karena ordinatnya bukan -1.
 d. \((-1, 1)\), karena \(-1 \times -2 \neq 1\)

3. Gambarkan segibanyak dengan titik sudut yang diberikan.
 a. \(A(7, 8), B(9, 3), C(3, 1)\)
 b. \(D(\frac{1}{2}, 4), E(6, 7), F(5, 3)\)
 c. \(G(\frac{1}{2}, 8), H(\frac{1}{2}, 12), J(4, 12), K(4, 8)\)
 d. \(L(4, 5), M(4, 8), N(10, 8), P(10, 5)\)
 e. \(Q(-4, 5), R(6, 9), S(3, 5), T(6, 3), U(1, 1)\)
 a. \(C(0, 2), D(9, 1) \)
 b. \(K(9, 2), L(4, 6) \)
 c. \(Q(3, 4), R(7, 9) \)

 Penyelesaian:
 a. \(|CD| = \sqrt{82} \)
 b. \(|KL| = \sqrt{41} \)
 c. \(|QR| = \sqrt{41} \)

5. Tentukan keliling dan luas dari segibanyak dengan titik sudut yang diberikan.
 a. \(Q(7, 6), R(7, 10), S(11, 10), T(11, 6) \)
 b. \(W(4, 8), X(4, 16), Y(10, 16), Z(10, 8) \)

 Penyelesaian:
 a. Persegi panjang, Keliling = \(4 + 3 + 4 + 3 = 14 \), Luas = \(3 \times 4 = 12 \)
 b. Persegi panjang, Keliling = \(6 + 12 + 6 + 12 = 36 \), Luas = \(6 \times 12 = 72 \)

 a. \((2, 2), (3, 3), (4, 5), (5, 5) \)
 b. \((2, 2), (3, 4), (4, 6), (5, 10) \)
 c. \((2, -2), (3, -4), (4, -8), (5, 16) \)
 d. \((1, -3), (-2, -4), (-6, -6), (-11, -6) \)
 e. \((2, 0), (3, 5), (4, 9), (5, 13) \)

 Penyelesaian:
 a. \((2, 2), (3, 3), (4, 4), (5, 5) \)
 b. \((2, 2), (3, 4), (4, 6), (5, 8) \)
 c. \((2, -2), (3, -4), (4, -8), (5, -16) \)
 d. \((1, -3), (-2, -4), (-6, -5), (-11, -6) \)
 i. Rico 12 kilometer ke utara
 ii. Ricky 15 kilometer ke barat
 iii. Rico 8 kilometer ke selatan
 iv. Ricky 17 kilometer ke timur
 v. Rico 10 kilometer ke utara
 vi. Ricky 5 kilometer ke barat
 vii. Rico 19 kilometer ke selatan

Tuliskan perintah yang seharusnya diberikan kepada Rico dan Ricky supaya posisi akhirnya sama tetapi Ricco dan Ricky hanya melakukan tugasnya satu kali. Berapakah jarak antara tempat asal dan tempat tujuan dalam perjalanan tersebut?

Penyelesaian:

Perintahnya adalah Rico 5 kilometer ke selatan dan Ricky 3 kilometer ke barat. jarak antara tempat asal dengan tempat tujuan adalah \(\sqrt{41}\) km.

8. Misalkan \(ABCD\) menyatakan segiempat yang terbentuk oleh garis lurus yang menghubungkan titik \(A\) ke \(B\), \(B\) ke \(C\), \(C\) ke \(D\) dan \(D\) ke \(A\). Perhatikan permasalahan berikut:
 a. Diketahui koordinat titik \(A\), \(B\), \(C\) dan \(D\) berturut-turut sebagai berikut \((-4, 2), (4, 2), (4, -2)\) dan \((-4, -2)\). Selidikilahlah apakah \(ABCD\) merupakan persegipanjang? Jelaskan jawaban siswa.
 b. Diketahui koordinat titik \(A\), \(B\), \(C\) dan \(D\) berturut-turut sebagai berikut \((-2, -6), (6, 2), (2, 6)\) dan \((-6, -2)\). Selidikilahlah apakah \(ABCD\) merupakan persegipanjang? Jelaskan jawaban siswa.
 c. Diketahui koordinat titik \(A\), \(B\), \(C\) dan \(D\) berturut-turut sebagai berikut \((a_1, a_2), (b_1, b_2), (c_1, c_2)\) dan \((d_1, d_2)\). Tuliskan langkah-langkah yang harus dilakukan untuk mengidentifikasi bahwa \(ABCD\) merupakan persegipanjang.
Penyelesaian:

a. $|AB| = 8, |BC| = 4, |CD| = 8, |DA| = 4, |AC| = \sqrt{80}, |BD| = \sqrt{80}$. Lihat bahwa $|AB| = |CD|, |BC| = |DA|, |AB|^2 + |BC|^2 = |AC|^2 = |CD|^2 + |DA|^2$ dan $|BC|^2 + |CD|^2 = |BD|^2 = |DA|^2 + |AB|^2$ sehingga segiempat $ABCD$ berbentuk persegi panjang.

b. $|AB| = \sqrt{128}, |BC| = \sqrt{32}, |CD| = \sqrt{128}, |DA| = \sqrt{32}, |AC| = \sqrt{80}, |BD| = \sqrt{160}$. Lihat bahwa $|AB| = |CD|, |BC| = |DA|, |AB|^2 + |BC|^2 = |AC|^2 = |CD|^2$ dan $|BC|^2 + |CD|^2 = |BD|^2 = |DA|^2 + |AB|^2$ sehingga segiempat $ABCD$ berbentuk persegi panjang.

c. Langkah-langkah yang harus dilakukan untuk mengidentifikasi bahwa segiempat $ABCD$ merupakan persegi panjang

i. Hitung panjang garis $|AB|, |BC|, |CD|, |DA|, |AC|, |BD|$.

ii. Cek apakah $|AB| = |CD|, |BC| = |DA|$, jika benar lanjut ke langkah berikutnya.

iii. Cek apakah sudut DAB membentuk 90° dengan menggunakan teorema pythagoras yaitu harus memenuhi $|BD|^2 = |DA|^2 + |AB|^2$, jika benar lanjut ke langkah berikutnya.

iv. Cek apakah sudut BCD membentuk 90° dengan menggunakan teorema pythagoras yaitu harus memenuhi $|BC|^2 + |CD|^2 = |BD|^2$, jika benar lanjut ke langkah berikutnya.

v. Cek apakah sudut ABC membentuk 90° dengan menggunakan teorema pythagoras yaitu harus memenuhi $|AB|^2 + |BC|^2 = |AC|^2$, jika benar lanjut ke langkah berikutnya.

vi. Cek apakah sudut CDA membentuk 90° dengan menggunakan teorema pythagoras yaitu harus memenuhi $|AC|^2 = |CD|^2 + |DA|^2$, jika benar segiempat $ABCD$ merupakan persegi panjang.

9. Misalkan $ABCD$ menyatakan segiempat yang terbentuk oleh garis lurus yang menghubungkan titik A ke B, B ke C, C ke D dan D ke A. Perhatikan permasalahan berikut:

a. Diketahui koordinat titik A, B, C dan D berturut-turut sebagai berikut (-2, 0), (0, 3), (2, 0) dan (0, -3). Selidikilah apakah $ABCD$ merupakan belah ketupat? Jelaskan jawaban siswa.

c. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((a_1, a_2), (b_1, b_2), (c_1, c_2) \) dan \((d_1, d_2)\). Tuliskan langkah-langkah yang harus dilakukan untuk mengidentifikasi bahwa \(ABCD \) merupakan belah ketupat.

Penyelesaian:

a. \(|\overline{AB}| = \sqrt{13}, |\overline{BC}| = \sqrt{13}, |\overline{CD}| = \sqrt{13}, |\overline{DA}| = \sqrt{13} \), lihat bahwa \(|\overline{AB}| = |\overline{BC}| = |\overline{CD}| = |\overline{DA}| \). Maka segiempat \(ABCD \) berbentuk belah ketupat.

b. \(|\overline{AB}| = \sqrt{26}, |\overline{BC}| = \sqrt{26}, |\overline{CD}| = \sqrt{26}, |\overline{DA}| = \sqrt{26} \), lihat bahwa \(|\overline{AB}| = |\overline{BC}| = |\overline{CD}| = |\overline{DA}| \). Maka segiempat \(ABCD \) berbentuk belah ketupat.

c. Langkah-langkah yang harus dilakukan untuk mengidentifikasi bahwa segiempat \(ABCD \) merupakan belah ketupat

i. Hitung panjang garis \(|\overline{AB}|, |\overline{BC}|, |\overline{CD}|, |\overline{DA}| \).

ii. Cek apakah \(|\overline{AB}| = |\overline{CD}| = |\overline{BC}| = |\overline{DA}| \) jika memenuhi maka \(ABCD \) merupakan belah ketupat

10. Misalkan \(ABCD \) menyatakan segiempat yang terbentuk oleh garis lurus yang menghubungkan titik \(A \) ke \(B \), \(B \) ke \(C \), \(C \) ke \(D \) dan \(D \) ke \(A \). Perhatikan permasalahan berikut :

a. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((-2, 0), (0, 3), (2, 0) \) dan \((0, -6)\). Selidikilah apakah \(ABCD \) merupakan layang-layang? Jelaskan jawaban siswa.

b. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((-2, -2), (-3, 3), (2, 2) \) dan \((6, -6)\). Selidikilah apakah \(ABCD \) merupakan layang-layang? Jelaskan jawaban siswa.

c. Diketahui koordinat titik \(A, B, C \) dan \(D \) berturut-turut sebagai berikut \((a_1, a_2), (b_1, b_2), (c_1, c_2) \) dan \((d_1, d_2)\). Tuliskan langkah-langkah yang harus dilakukan untuk mengidentifikasi bahwa \(ABCD \) merupakan layang-layang.

Penyelesaian:

a. \(|\overline{AB}| = \sqrt{13}, |\overline{BC}| = \sqrt{13}, |\overline{CD}| = \sqrt{40}, |\overline{DA}| = \sqrt{40} \), lihat bahwa \(|\overline{AB}| = |\overline{BC}|, |\overline{CD}| = |\overline{DA}| \). Maka segiempat \(ABCD \) berbentuk layang-layang.

b. \(|\overline{AB}| = \sqrt{26}, |\overline{BC}| = \sqrt{26}, |\overline{CD}| = \sqrt{80}, |\overline{DA}| = \sqrt{80} \), lihat bahwa \(|\overline{AB}| = |\overline{BC}|, |\overline{CD}| = |\overline{DA}| \). Maka segiempat \(ABCD \) berbentuk layang-layang.

c. Langkah-langkah yang harus dilakukan untuk mengidentifikasi bahwa segiempat \(ABCD \) merupakan laying-layang

i. Hitung panjang garis \(|\overline{AB}|, |\overline{BC}|, |\overline{CD}|, |\overline{DA}| \).
ii. Cek apakah $|\overline{AB}| = |\overline{CD}|$, $|\overline{BC}| = |\overline{DA}|$ jika memenuhi maka $ABCD$ merupakan layang-layang

11. Dua titik sudut segitiga ABC adalah $A(-4, -1)$ dan $B(4, -1)$. Tuliskan 4 kemungkinan koordinat titik sudut ketiga sehingga luas segitiga ABC adalah 24 satuan luas.

Penyelesaian:

(-4, 5), (4, 5), (-2, 5), (2, 5).

![diagram](image)

Penyelesaian:

Jarak terpendek adalah $|\overline{BD}| = \sqrt{29}$

13. Pada pemetaan topografi kota, titik batas kota adalah $A(12, 9)$, $B(20, 9)$, $C(20, 2)$, $D(16, -3)$ dan $E(12, 2)$. Koordinat diukur dalam kilometer. Berapa luas kota itu?

Penyelesaian:

Luas $= 7 \times 8 + \frac{1}{2} (8 \times 5) = 56 + 20 = 76$ km²

14. Titik batas halaman belakang rumah adalah $W(20, 30)$, $X(20, 100)$, $Y(120, 100)$ dan $Z(60, 30)$ (koordinat diukur dalam meter). Garis XZ membagi halaman belakang menjadi dua daerah; yaitu, daerah rumput dan kebun. Luas daerah rumput lebih besar daripada daerah kebun. Berapa perbandingan antara daerah rumput dan kebun?
Penyelesaian:

Luas keseluruhan = \frac{1}{2}(40 + 100) \times 70 = 4.900

Dan

Luas salah satu bagian = \frac{1}{2} \times 40 \times 70 = 1.400

Maka

\frac{\text{Luas daerah rumput}}{\text{Luas kebun}} = \frac{4.900 - 1.400}{1.400} = \frac{3.500}{1.400} = \frac{5}{2}

15. Titik sudut persegi adalah (2, 0), (2, a), (6, a) dan (6, 0). Titik sudut jajarangenjang adalah (2, 0), (3, b), (7, b) dan (6, 0). Nilai |a| lebih besar dari pada nilai |b|. Segiempat yang mana yang memiliki luas yang lebih besar? Jelaskan alasanmu.

Penyelesaian:

Luas persegi = 4 \times |a|

Dan

Luas jajar genjang = 4 \times |b|

Karena

|a| > |b|

Maka

Luas Persegi > Luas Jajar Genjang

16. Sebutkan semua titik pada bidang kartesius yang berjarak 4 satuan dari (3, 5) dan (3, 12).

Penyelesaian:

Missal koordinat dari titik tersebut adalah (x, y) maka

\((x - 3)^2 + (y - 5)^2 = 16 \) \ldots (1)

Dan

\((x - 3)^2 + (y - 12)^2 = 16 \) \ldots (2)

Dari Persamaan (1) dan (2) didapatkan

\((y - 12)^2 - (y - 5)^2 = 0 \)

Dapat disederhanakan menjadi

\(-14y + 119 = 0\)
Maka

\[y = \frac{119}{14} \]

Kemudian subtitusi hasil ini ke Persamaan (1) didapatkan

\[(x - 3)^2 = 16 - \left(\frac{7}{2} \right)^2 = \frac{15}{4}\]

Sehingga

\[x = 3 \pm \sqrt{\frac{15}{4}} \]

Maka titiknya adalah \(\left(\frac{15}{4}, 3 + \sqrt{\frac{15}{4}} \right) \) dan \(\left(\frac{15}{4}, 3 - \sqrt{\frac{15}{4}} \right) \)

17. Diketahui suatu barisan koordinat (2, 3), (5, 7), (-4, -5), (11, 15), Tentukan ordinat suku ke 10 dari barisan tersebut jika absisnya adalah 42.

Penyelesaian:

Perhatikan bahwa

a. Jarak (2, 3) dan (5, 7) adalah 5
b. Jarak (2, 3) dan (-4, -5) adalah 10
c. Jarak (2, 3) dan (11, 15) adalah 15

Maka suku ke-10 harus berjarak 45 dari titik (2, 3) sehingga

\[(\text{absis} - 2)^2 + (42 - 3)^2 = 45^2\]

Dengan demikian

\[(\text{absis} - 2)^2 = 2.025 - 1.521 = 504\]

Maka

\[\text{absis} = 2 \pm \sqrt{504} \]

18. Sekolahmu berada pada koordinat (3, -4); yaitu, tiga blok ke timur dan empat blok ke selatan dari pusat kota. Untuk pergi dari rumahmu ke sekolah siswa berjalan 7 blok ke barat dan 3 blok ke utara.

a. Tentukan koordinat sekolahmu.

b. Dapatkan siswa menentukan rute perjalanan untuk pergi dari rumah ke sekolah yang melewati pusat kota dengan jarak tempuh yang sama dengan jarak tempuh ketika siswa pergi dari rumah ke sekolah tanpa melewati pusat kota? Jika siswa bisa tentukan rutennya.
c. Siswa sekarang berada di pusat kota dan siswa mengambil jalur terpendek untuk pulang. Berapa perbandingan blok yang siswa tempuh ketika siswa berangkat pulang dari pusat kota dan berangkat pulang dari sekolah?

Penyelesaian:

a. Koordinat sekolah adalah \((3 - 7, -4 + 3) = (-4, -1)\)

c. Pusat kota ke rumah harus melewati \(3 + 4 = 7\) blok dan dari sekolah ke rumah harus melewati \(7 + 3 = 10\) blok.

19. Adi ingin pergi ke kota A yang terletak pada koordinat \((11, 3)\) dan dari kota A dia pergi ke kota B yang terletak pada koordinat \((14, -1)\). Jika sekarang Adi berada pada koordinat \((8, 7)\) dan dia pergi ke kota A dengan kecepatan 30 satuan per jam sedangkan ke kota B dengan kecepatan 40 satuan per jam. Tentukan berapa lama waktu yang dibutuhkan Adi untuk sampai ke kota B dari posisinya sekarang? Tentukan berapa lama waktu yang dibutuhkan Adi untuk kembali ke tempat posisinya sekarang dari kota B jika kecepatan kendaraannya adalah 35 satuan per jam.

Penyelesaian:

- Jarak posisi sekarang dengan kota A adalah 5 satuan

 Waktu yang dibutuhkan \(\frac{5}{30} = \frac{1}{6}\) jam

- Jarak kota A dengan kota B adalah 5 satuan

 Waktu yang dibutuhkan \(\frac{5}{40} = \frac{1}{8}\) jam

Maka waktu yang dibutuhkan untuk menuju kota B dengan melewati kota A adalah \(\frac{1}{6} + \frac{1}{8} = \frac{14}{48} = \frac{7}{24}\)

- Jarak posisi sekarang dengan kota B adalah 10 satuan

 Waktu yang dibutuhkan \(\frac{10}{35} = \frac{2}{7}\) jam

<table>
<thead>
<tr>
<th>Tahun Sejak 2000, x</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keuntungan (Juta rupiah), y</td>
<td>0,7</td>
<td>-0,1</td>
<td>-1,1</td>
<td>1,3</td>
<td>0,9</td>
<td>1,1</td>
<td>-0,5</td>
</tr>
</tbody>
</table>

a. Tampilkan data dalam grafik
b. Buat tiga pengamatan atas grafik
c. Berapa total keuntungan dari 2006 hingga 2012?

Penyelesaian:

a. Gambar grafik
b. Keuntungan terbesar terjadi pada tahun ke-10, kerugian terbesar terjadi pada tahun ke-9 dan perusahaan mengalami untung pada tahun 7, 10, 11 dan 12.
c. 2.3 juta rupiah
Remedial

Bidang Kartesius

1. Gambarkan segi banyak dengan titik sudut yang diberikan pada bidang kartesius.
 i. \(A(6, 2), B(7, 6), C(8, 3) \)
 ii. \(D(3, 4), E(5, 8), F(8, 8), G(6, 4) \)

2. Gambarkan dan beri label untuk setiap pasang titik pada bidang kartesius. Tentukan panjang garis yang menghubungkan kedua titik.
 a. \(C(-2, 2), D(7, 1) \)
 b. \(K(10, 2), L(5, 6) \)
 c. \(Q(5, 4), R(9, 9) \)

 Penyelesaian:
 a. \(|CD| = \sqrt{82} \)
 b. \(|KL| = \sqrt{41} \)
 c. \(|QR| = \sqrt{41} \)

3. Tentukan keliling dan luas dari segi banyak dengan titik sudut yang diberikan.
 i. \(Q(7, 5), R(7, 9), S(11, 9), T(11, 5) \)
 ii. \(W(4, 6), X(4, 14), Y(10, 14), Z(10, 6) \)

 Penyelesaian:
 i. Persegi panjang, Keliling = \(4 + 3 + 4 + 3 = 14\), Luas = \(3 \times 4 = 12\)
 ii. Persegi panjang, Keliling = \(6 + 12 + 6 + 12 = 36\), Luas = \(6 \times 12 = 72\)

4. Pada pemetaan topografi kota, titik batas kota adalah \(A(13,9), B(21,9), C(21,2), D(17, -3) \) dan \(E(13, 2) \). Koordinat diukur dalam kilometer. Berapa luas kota itu?

 Penyelesaian:
 \[
 \text{Luas} = 7 \times 8 + \frac{1}{2} (8 \times 5) = 56 + 20 = 76 \text{ km}^2
 \]

5. Titik batas halaman belakang rumah adalah \(W(20, 40), X(20, 110), Y(120, 110) \) dan \(Z(60, 40) \) (koordinat diukur dalam meter). Garis \(XZ \) membagi halaman belakang menjadi dua daerah; yaitu, daerah rumput dan kebun. Luas daerah rumput lebih besar daripada daerah kebun. Berapa perbandingan antara daerah rumput dan kebun?

 Penyelesaian:
 \[
 \text{Luas keseluruhan} = \frac{1}{2} (40 + 100) \times 70 = 4.900
 \]
 Dan
 \[
 \text{Luas salah satu bagian} = \frac{1}{2} \times 40 \times 70 = 1.400
 \]
 Maka
 \[
 \frac{\text{Luas daerah rumput}}{\text{Luas kebun}} = \frac{4.900 - 1.400}{1.400} = \frac{3.500}{1.400} = \frac{5}{2}
 \]
1. Memodelkan suatu masalah nyata dalam persamaan linear dua variabel.
2. Menyelesaikan masalah yang dapat dimodelkan dalam sistem persamaan linear dua variabel dengan grafik.
3. Menginterpretasikan grafik dari sistem persamaan linear dua variabel untuk mengetahui sistem tersebut mempunyai penyelesaian atau tidak.
4. Menyelesaikan masalah yang dapat dimodelkan dalam sistem persamaan linear dua variabel dengan subsitusi.
5. Menyelesaikan masalah yang dapat dimodelkan dalam sistem persamaan linear dua variabel dengan eliminasi.
Peta Konsep

Sistem Persamaan Linear Dua Variabel

Membuat Model Sistem Persamaan Linear Dua Variabel (SPLDV)

Mencari Penyelesaian SPLDV

Metode Grafik
- Intrepretasi Grafik
- Dua Grafik Berpotongan
- Dua Grafik Berhimpit
- Dua Grafik Sejajar

Metode Substitusi

Metode Eliminasi
Diophantus dan Persamaan Linear Dua Variabel

Persamaan Diophantine merupakan suatu persamaan yang mempunyai solusi yang diharapkan berupa bilangan bulat. Persamaan Diophantine tidak harus berbentuk persamaan linear, bisa saja kuadrat, kubik, atau lainnya selama mempunyai solusi bilangan bulat.

Bentuk paling sederhananya diberikan oleh

\[ax + by = c \]

a, b koefisien dan *c* konstanta bulat yang diberikan. Penyelesaian persamaan Diophantine adalah semua pasangan bilangan bulat \((x, y)\) yang memenuhi persamaan ini. Jika *d* adalah FPB dari *a* dan *b*, maka agar persamaan di atas mempunyai solusi maka *d* harus dapat membagi *c*. Terkadang dalam menentukan pasangan bilangan bulat yang memenuhi persamaan, kita harus mencoba-coba dan pandai menentukan pola dari penyelesaiannya.

Sumber: www.edulens.org

Hikmah yang bisa diambil

2. Terkadang kita dihadapkan dengan masalah yang penyelesaiannya tidak tunggal. Oleh karena itu, gali informasi lebih dalam untuk mendapatkan penyelesaian lainnya.
A. Memodelkan Masalah dalam Persamaan Linear Dua Variabel

Pertanyaan Penting

Setelah mempelajari Sub Bab A ini diharapkan siswa dapat menjawab pertanyaan penting di bawah ini.

Pertanyaan Penting

Bagaimana siswa dapat memodelkan suatu masalah ke dalam Persamaan Linear Dua Variabel (PLDV) atau Sistem Persamaan Linear Dua Variabel (SPLDV)?

Di kelas VIII siswa telah belajar tentang Persamaan Linear Dua Variabel (PLDV). Bagaimana suatu persamaan disebut PLDV? Metode penyelesaian SPLDV apa saja sudah siswa pelajari di kelas VIII. Bagaimana caranya? Jika lupa, minta siswa membuka kembali buku Matematika kelas VIII.

Dalam Bab 9 buku Matematika Kelas IX ini, siswa akan mengulang kembali konsep tersebut, lebih fokusnya pada bagaimana menyelesaikan permasalahan nyata yang berkaitan dengan PLDV dan SPLDV dan menginterpretasikan apakah suatu SPLDV mempunyai penyelesaian tunggal, tak terhingga, atau tidak punya penyelesaian.

Untuk itu, minta siswa melakukan kegiatan-kegiatan berikut ini bersama temannya.

Kegiatan 9.1 Membuat model PLDV atau SPLDV: Tinggi Lilin

Kegiatan 9.1 Membuat model PLDV atau SPLDV: Tinggi Lilin

Coba pikirkan masalah di bawah ini!

Di suatu daerah jaringan listrik mati hingga beberapa hari karena bencana alam, sehingga untuk penerangan mayoritas warga menggunakan lilin. Misalkan ada dua jenis lilin yaitu lilin pertama tingginya 25 cm meleleh rata-rata setinggi 1,5 cm per jam dan lilin kedua tingginya 30 cm meleleh rata-rata setinggi 2 cm per jam. Jika
dinyalakan, setiap lilin akan habis setelah menyala berapa jam? Jika dinyalakan bersama-sama, kapan kedua lilin tersebut sama tinggi? Berapa tingginya?

Buatlah persamaan linear dua variabel untuk menyatakan masalah ini!

Alternatif Penyelesaian:

Misalkan:

- lama waktu lilin menyala adalah \(x \) jam,
- tinggi lilin pertama setelah menyala selama \(x \) jam adalah \(y_1 \) cm.
- tinggi lilin kedua setelah menyala selama \(x \) jam adalah \(y_2 \) cm.

Persamaan linear untuk menyatakan tinggi lilin pertama setelah menyala selama \(x \) jam:

\[y_1 = 25 - 1,5x \]

Tahukah siswa mengapa demikian? Diskusikan bersama temanmu.

Persamaan linear untuk menyatakan tinggi lilin kedua setelah menyala selama \(x \) jam:

\[y_2 = 30 - 2x \]

Tahukah siswa mengapa demikian? Diskusikan bersama temanmu.

Penyelesaian masalah ini akan dibahas pada Subbab berikutnya.

Kegiatan 9.2 Membuat model PLDV atau SPLDV: Bisnis Rumah Kost

Coba pikirkan masalah di bawah ini!

Bu Parti membuka bisnis rumah kost. Biaya untuk mendirikan 5 kamar kos yang bu Parti keluarkan sebesar Rp63.000.000,00. Biaya pembayaran listrik dan air PDAM
per bulan untuk 5 penghuni kost (tiap kamar berisi 1 orang) diperkirakan sebesar Rp250.000,00. Bu Parti menentukan tarif kost tiap kamar sebesar Rp400.000,00 per bulan. Seandainya kamar kost selalu laku (tidak ada kamar kosong), berapa lama waktu yang diperlukan bu Parti untuk balik modal (break even point)? Buatlah sistem persamaan linear dua variabel untuk masalah ini!

Alternatif Penyelesaian:

Misalkan:

lama waktu yang diperlukan adalah \(x \) bulan,

biaya yang dikeluarkan oleh Bu Parti selama \(x \) bulan adalah \(B \), dan

pendapatan yang diterima Bu Parti selama \(x \) bulan adalah \(P \).

Persamaan linear untuk menyatakan biaya yang dikeluarkan selama \(x \) bulan:

\[
B = 250.000x + 63.000.000
\]

Tahukah siswa mengapa demikian? Diskusikan bersama temanmu.

Persamaan linear untuk menyatakan pendapatan yang diterima selama \(x \) bulan:

\[
P = 5 \times 400.000x = 2.000.000x
\]

Mengapa demikian? Diskusikan bersama temanmu.

Penyelesaian masalah ini akan dibahas pada Subbab berikutnya.

Ayo Kita Mencoba

Ocha membelikan Ezra 3 kg mangga dan 4 kg apel dengan harga Rp98.000,00. Ia membeli lagi untuk keluarganya 2 kg mangga dan 2 kg apel yang sama di warung buah yang sama dan membayar lagi Rp52.000,00. Di jalan kemudian ia bertemu Al
temannya dan ditanya “Berapa harga per kg mangga dan apel itu, Cha?” tetapi Ocha
tidak tahu karena ia membeli tanpa menanyakan harganya per kg terlebih dahulu.
Kira-kira bagaimana menjawab pertanyaan Al tersebut tanpa kembali ke warung
buah tadi dan tanya ke pedagangnya? Bagaimana model SPLDV untuk masalah ini?

Untuk menyelesaikan masalah di atas pertama perlu dibuat modelnya dalam
suatu sistem persamaan linear dua variabel (SPLDV). Permasalahan di atas dapat
diilustrasikan dalam tabel di bawah ini:

<table>
<thead>
<tr>
<th>Mangga</th>
<th>Apel</th>
<th>Harga</th>
</tr>
</thead>
<tbody>
<tr>
<td>3kg</td>
<td>4kg</td>
<td>Rp98.000,00</td>
</tr>
<tr>
<td>2kg</td>
<td>2kg</td>
<td>Rp52.000,00</td>
</tr>
<tr>
<td>1kg</td>
<td>1kg</td>
<td>Rp ...?</td>
</tr>
</tbody>
</table>

Alternatif Penyelesaian:

Harga 1 kg mangga belum diketahui, maka dapat kita misalkan:

\[
harga 1 \text{ kg mangga} = x \text{ rupiah.}
\]

Harga 1 kg apel juga belum diketahui, maka dapat kita misalkan

\[
harga 1 \text{ kg apel} = y \text{ rupiah.}
\]

\[
harga 3 \text{ kg mangga} + harga 4 \text{ kg apel} = Rp98.000,00 \quad \rightarrow \quad 3x + 4y = 98.000
\]

\[
harga 2 \text{ kg mangga} + harga 2 \text{ kg apel} = Rp52.000,00 \quad \rightarrow \quad 2x + 2y = 52.000
\]

Tahukah siswa mengapa demikian? Diskusikan bersama temanmu.

Penyelesaian masalah ini akan dibahas pada Subbab berikutnya.

Kegiatan 9.4 Membuat Model PLDV atau SPLDV: Tinggi Badan Si Kembar

Coba pikirkan masalah di bawah ini!

Yudi dan Yuda adalah saudara kembar yang mempunyai tinggi badan yang sama. Keempat balok pada gambar di samping ini kongruen. (perhatikan gambar). Berapa tinggi badan si kembar? Nyatakan masalah tersebut dalam persamaan linear!

Alternatif Penyelesaian:

Misalkan:
- tinggi Yudi dan Yuda adalah \(h \) cm
- panjang balok adalah \(x \) cm

\[x \text{ cm} \]

- tinggi balok adalah \(y \) cm

\[y \text{ cm} \]

Lihat gambar sebelah kiri (Yudi), tinggi badan Yudi dapat dinyatakan dengan persamaan:

\[h \]
\[h - x + y = 172 \quad \rightarrow \quad h = x - y + 172 \quad \ldots \text{ (i)} \]

Lihat gambar sebelah kiri (Yuda), tinggi badan Yuda dapat dinyatakan dengan persamaan:

\[h - y + x = 187 \quad \rightarrow \quad h = y - x + 187 \quad \ldots \text{ (ii)} \]

Penyelesaian masalah ini akan dibahas pada Sub Bab 9.B.

Materi Esensi

Memodelkan Masalah dalam PLDV atau SPLDV

Pada Materi Esensi ini akan dibahas megenai cara untuk memodekan permasalahan umum ke dalam bentuk Persamaan Linear dua Variabel (PLDV) ataupun Sistem Persamaan Linear dua Variabel (SPLDV). Arahkan siswa untuk membuat memahami setiap langkah dalam membuat suatu Persamaan Linear Dua Variabel dari kegiatan-kegiatan yang telah dilakukan sebelumnya. Berikan kesempatan kepada siswa untuk bertanya dan berdiskusi. Berikan penjelasan secukupnya kepada siswa yang belum memahami materi dengan baik.

Materi Esensi

Memodelkan Masalah dalam PLDV atau SPLDV

Persamaan Linear dua Variabel (PLDV) adalah persamaan yang terdiri dari dua besaran yang belum diketahui (variabel) dan derajat tertinggi suku-sukunya adalah satu (linear). Kumpulan dari dua atau lebih Persamaan Linear dua Variabel (PLDV) disebut Sistem Persamaan Linear dua Variabel (SPLDV).

Suatu masalah tertentu dapat diselesaikan dengan SPLDV dengan terlebih dulu memodelkan masalah tersebut dalam SPLDV.

Langkah-langkah memodelkan suatu masalah menjadi PLDV atau SPLDV:

Langkah 1:
Baca dan pahami masalahnya dengan baik. Identifikasi dua besaran yang belum diketahui dan harus dicari.
Langkah 2:
Nyatakan dua besaran tersebut dengan variabel \(x \) dan \(y \) (boleh juga menggunakan huruf selain \(x \) dan \(y \)).

Langkah 3:
Nyatakan besaran lainnya pada permasalahan yang diberikan dalam bentuk \(x \) dan \(y \).

Contoh:

Perhatikan masalah di bawah ini

Ocha membeli Ezra 3 kg mangga dan 4 kg apel dengan harga Rp98.000,00. Ia membeli lagi untuk keluarganya 2 kg mangga dan 2 kg apel yang sama di warung buah yang sama dan membayar lagi Rp52.000,00. Berapa harga mangga dan apel itu per kg?

Langkah 1:
Baca dan pahami masalahnya dengan baik. Identifikasi dua besaran yang belum diketahui dan harus dicari.

Besaran yang belum diketahui dan harus dicari adalah:
- Harga mangga per kg
- Harga apel per kg

Langkah 2:
Nyatakan dua besaran tersebut dengan variabel \(x \) dan \(y \) (boleh juga menggunakan huruf selain \(x \) dan \(y \)).

Misalkan:
- Harga mangga per kg = \(x \)
- Harga apel per kg = \(y \)

Langkah 3:
Nyatakan besaran lainnya (permasalahan yang diberikan) dalam bentuk \(x \) dan \(y \).

"Ocha membelikan Ezra 3 kg mangga dan 4 kg apel dengan harga Rp98.000,00"

Kalimat pertama dari masalah di atas dapat dinyatakan dengan model matematika (dalam hal ini persamaan lineier dua variabel) sebagai berikut:

\[
3x + 4y = 98.000 \tag{i}
\]

"Ia membeli lagi untuk keluarganya 2 kg mangga dan 2 kg apel yang sama di warung buah yang sama dan membayar lagi Rp52.000,00"

Kalimat pertama dari masalah di atas dapat dinyatakan dengan model matematika (dalam hal ini persamaan lineier dua variabel) sebagai berikut:

\[
2x + 2y = 52.000 \tag{ii}
\]
SPLDV untuk masalah di atas adalah sebagai berikut:

\[
\begin{align*}
3x + 4y &= 98.000 \\
2x + 2y &= 52.000
\end{align*}
\]

Permasalahan di atas dapat diselesaikan dengan mencari pernyelesaian SPLDV tersebut.

Contoh 9.1

Tebak Angka (1)

Contoh 9.2

Dua angka jumlahnya 197. Selisih kedua angka itu adalah 109. Berapakah angka-angka tersebut?

Nyatakan kondisi tersebut dalam Sistem Persamaan Linear Dua Variabel (SPLDV) terlebih dulu!

Alternatif Penyelesaian:

Langkah 1:

Baca dan pahami masalahnya dengan baik. Identifikasi dua besaran yang belum diketahui dan harus dicari.

Besaran yang belum diketahui dan harus dicari adalah:

- Angka pertama dan
- Angka kedua

Langkah 2:

Nyatakan dua besaran tersebut dengan variabel \(x \) dan \(y \) (boleh juga menggunakan huruf selain \(x \) dan \(y \)).

Misalkan:

- Angka pertama (yang lebih besar) adalah \(x \)
- Angka kedua adalah \(y \)
Langkah 3:

Nyatakan besaran lainnya (permasalahan yang diberikan) dalam bentuk x dan y.

- Dua buah bilangan jumlahnya 197 → $x + y = 197$
- Selisihnya adalah 109 → $x - y = 109$

Jadi, masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel (SPLDV) yang terdiri dari persamaan (i) dan (ii)

\[
\begin{align*}
 x + y &= 197 \\
 x - y &= 109
\end{align*}
\]

Lebih lanjut, penyelesaian masalah ini akan dibahas pada Sub Bab 9.B.

Ayo Kita Mencoba

Contoh 9.2

Tebak Angka (2)

Alternatif Penyelesaian:

Langkah 1:

Besaran yang belum diketahui dan harus dicari adalah:

- suatu angka puluhan
 - angka pertama
 - angka kedua

Langkah 2:

Misalkan
digit pertama (angka puluhan) adalah y
digit kedua (angka satuan) adalah x

Langkah 3:

Bilangan puluhan itu adalah
y	x
bilangan itu adalah $\rightarrow 10y + x$

"jumlah dua digit bilangan itu adalah 9" $\rightarrow y + x = 9$ (i)

y	x
Jika ditukar urutannya menjadi $\rightarrow x | y$

"Angka itu dikali 9" dapat ditulis dengan $\rightarrow 9(10y + x)$

"Dua kali angka itu jika bilangan dua digit itu ditukar urutannya" dapat ditulis dengan $\rightarrow 2(10x + y)$

sehingga,

"Angka itu dikalikan 9 sama dengan dua kali angka itu jika bilangan dua digit itu ditukar urutannya" dapat ditulis dengan $\rightarrow 9(10y + x) = 2(10x + y)$

$90y + 9x = 20x + 2y$

$90y - 2y + 9x - 20x = 0$

$88y - 11x = 0$ (ii)

Jadi masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel (SPLDV) yang terdiri dari persamaan (i) dan (ii)

$\begin{align*}
y + x &= 9 \\
88y - 11x &= 0
\end{align*}$

SPLDV

Lebih lanjut, penyelesaian masalah ini akan dibahas pada Sub Bab 9.B.

Ayo Kita Mencoba

Contoh 9.3

Usia Ayah dan Anaknya

Contoh 9.3

Usia Ayah dan Anaknya

Sepuluh tahun yang lalu usia ayah Ika adalah empat kali usia Ika. Enam tahun yang akan datang usia ayah Ika adalah dua kali usia Ika. Berapa usia Ika dan ayahnya sekarang? Nyatakan permasalahan tersebut dalam Sistem Persamaan Linear Dua Variabel (SPLDV) terlebih dulu!

Alternatif Penyelesaian:

Langkah 1:
Besaran yang belum diketahui dan harus dicari adalah:
- usia ayah Ika sekarang
- usia Ika sekarang

Langkah 2:
Misalkan
Usia ayah Ika sekarang adalah x
Usia Ika sekarang adalah y

Langkah 3:
usia ayah Ika sepuluh tahun lalu adalah $x - 10$
usia Ika sepuluh tahun lalu adalah $y - 10$

“*Sepuluh tahun yang lalu usia ayah Ika adalah empat kali usia Ika*” dapat dinyatakan dengan:

\[
x - 10 = 4(y - 10) \\
x - 10 = 4y - 40 \\
x - 4y = -40 + 10 \\
x - 4y = -30
\]

(i)

usia ayah Ika enam tahun yang akan datang adalah $x + 6$
usia Ika enam tahun yang akan datang adalah $y + 6$

“*Enam tahun yang akan datang usia ayah Ika adalah dua kali usia Ika*” dapat dinyatakan dengan:

\[
x + 6 = 2(y + 6) \\
x + 6 = 2y + 12 \\
x - 2y = 12 - 6 \\
x - 2y = 6
\]

(ii)
Jadi masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel (SPLDV) yang terdiri dari persamaan (i) dan (ii)

\[
\begin{align*}
 x - 4y &= -30 \\
 x - 2y &= 6
\end{align*}
\]

SPLDV

Lebih lanjut, penyelesaian masalah ini akan dibahas pada Sub Bab 9.B.

Latihan 9.1 Memodelkan Masalah dalam PLDV atau SPLDV

Sedangkan penilaian aspek sikap dan keterampilannya dapat diambil melalui pengamatan (penilaian guru, teman sejawat atau diri sendiri) pada saat siswa bersama kelompoknya melakukan kegiatan-kegiatan dalam Sub bab 9.A.

Latihan 9.1 Memodelkan Masalah dalam PLDV atau SPLDV

Nyatakan permasalahan berikut ini dalam Persamaan Linear Dua Variabel atau Sistem Persamaan Linear Dua Variabel.

1. Jumlah dua bilangan cacah adalah 1.100, sedangkan selisih kedua bilangan itu adalah 722. Berapakah bilangan itu masing-masing?

 Penyelesaian:

 Misal:

 Bilangan pertama = x
 Bilangan kedua = y

 $x + y = 1.100$
 $x - y = 722$
2. Harga 4 ekor ayam dan 5 ekor bebek adalah Rp530.000,00, sedangkan harga 3 ekor bebek dan 2 ekor ayam adalah Rp300.000,00. Berapa harga seekor bebek?

Penyelesaian:
Misal:
Harga 1 ekor ayam = \(x\) rupiah
Harga 1 ekor bebek = \(y\) rupiah
SPLDV untuk permasalahan tersebut:

\[4x + 5y = 530.000\]
\[3x + 2y = 300.000\]

3. Paul mentraktir temannya untuk minum kopi dan makan kue di suatu tempat karena. Ia membeli 5 cangkir kopi dan 4 porsi kue dengan harga Rp220.000,00. Di kesempatan yang lain ia membeli lagi 2 cangkir kopi dan 2 porsi kue yang sama dengan harga Rp94.000,00. Berapa harga secangkir kopi?

Penyelesaian:
Misal:
Harga 1 cangkir kopi = \(x\) rupiah
Harga 1 porsi kue = \(y\) rupiah
SPLDV untuk permasalahan tersebut:

\[5x + 4y = 220.000\]
\[2x + 2y = 94.000\]

4. Memberi Sumbangan
Fahim dan Hafidz ingin menyumbang korban banjir dengan uang tabungannya. Jumlah uang Fahim dan uang Hafidz yang mau disumbangkan adalah Rp220.000,00. Jika uang Fahim Rp80.000,00 lebih sedikit dari uang Hafidz. Berapakah uang Fahim?

Penyelesaian:
Misal:
Uang Fahim = \(x\) rupiah
Uang Hafidz = \(y\) rupiah
SPLDV untuk permasalahan tersebut:

\[x + y = 220.000 \]
\[y - x = 80.000 \]

5. **Luas Persegi Panjang**

Luas suatu persegi panjang akan berkurang sebesar 80 cm\(^2\) jika panjangnya dikurangi 5 cm dan lebarnya ditambah 2 cm. Jika panjangnya ditambah 10 cm dan lebarnya dikurangi 5 cm, luasnya bertambah sebesar 50 cm\(^2\). Berapa ukuran persegi panjang itu mula-mula?

Penyelesaian:

Misal:

Panjang persegi panjang = \(p \) cm
Lebar persegi panjang = \(l \) cm

SPLDV untuk permasalahan tersebut:

\[(p - 5)(l + 2) = pl - 80 \Leftrightarrow pl + 2p - 5l - 10 = pl - 80 \Leftrightarrow 2p - 5l = -70 \]
\[(p + 10)(l - 5) = pl + 50 \Leftrightarrow pl - 5p + 10l - 50 = pl + 50 \Leftrightarrow -5p + 10l = 100 \]

6. **Bunga**

Rani dan Sari membeli bunga untuk hadiah adik-adik kelasnya yang diwisuda. Rani membeli 4 tangkai mawar dan 6 tangkai tulip dengan harga Rp242.000,00. Sari membeli 8 tangkai mawar dan 2 tangkai tulip yang sama di toko bunga yang sama Rp214.000,00. Berapa harga setangkai tulip?

Penyelesaian:

Misal:

Harga 1 tangkai bunga mawar = \(x \) rupiah
Harga 1 tangkai bunga tulip = \(y \) rupiah

SPLDV untuk permasalahan tersebut:

\[4x + 6y = 242.000 \]
\[8x + 2y = 214.000 \]

7. **Perbandingan Usia**

Perbandingan usia Neni dan Wati empat tahun lalu adalah 5 : 7. Perbandingan usia Neni dan Wati delapan tahun yang akan datang adalah 4 : 5. Berapa usia mereka masing-masing saat ini?
Penyelesaian:
Misal:
Usia Neni sekarang = n tahun
Usia Wati sekarang = w tahun
SPLDV untuk permasalahan tersebut:

\[
(n - 4) : (w - 4) = 5 : 7 \iff 7(n - 4) = 5(w - 4) \iff 7n - 5w = 8
\]

\[
(n + 8) : (w + 8) = 4 : 5 \iff 5(n + 8) = 4(w + 8) \iff 5n - 4w = -8
\]

8. Berpikir Kritis
Suatu pekerjaan dapat menyelesaikan oleh 8 orang laki-laki dan 12 orang perempuan dalam waktu 10 hari. Sedangkan jika dikerjakan oleh 6 orang laki-laki dan 8 orang perempuan pekerjaan itu selesai dalam waktu 14 hari. Berapa waktu yang diperlukan untuk menyelesaikan pekerjaan itu jika dikerjakan oleh:

a. seorang laki-laki saja?

b. Seorang perempuan saja?

9. Berpikir Kritis
Ina mempunyai toko sepatu. Untuk jenis sepatu tertentu, jika Ina menjual 2 pasang sepatu lebih banyak ia memperoleh jumlah uang yang sama. Harga jual setiap pasang sepatu adalah Rp 20.000,00 lebih murah dari harga jual normalnya. Jika Ina menjual sepatu 2 pasang lebih sedikit ia juga memperoleh jumlah uang yang sama, harga jual setiap pasang sepatu Rp40.000,00 lebih mahal dari harga jual normalnya.

a. Berapa pasang sepatu yang dijual Ina untuk jenis tersebut?

b. Berapa harga jual normal sepasang sepatu itu?

Penyelesaian:
Misal:
Banyak sepatu yang dijual = n buah
Harga jual 1 sepatu (normal) = x rupiah
Sehingga uang yang diperoleh dari penjualan n buah sepatu = xn rupiah
SPLDV untuk permasalahan tersebut:

\[
(x - 20.000)(n + 2) = xn \iff xn - 20.000n + 2x - 40.000 = xn
\]
\[
\iff -20.000n + 2x = 40.000 \quad \text{(i)}
\]

\[
(x + 40.000)(n - 2) = xn \iff xn + 40.000n - 2x - 80.000 = xn
\]
\[
\iff 40.000n + 2x = 80.000 \quad \text{(ii)}
\]
10. **Berpikir Kritis**

Lala dan Lili bersepakat untuk memanjangkan rambutnya hingga beberapa tahun mendatang. Tabel di bawah ini menunjukkan panjang rambut mereka pada bulan yang berbeda:

<table>
<thead>
<tr>
<th>Bulan ke-</th>
<th>Panjang Rambut (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lala</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
</tr>
</tbody>
</table>

Sumber: www.3.bp.blogspot.com

Suatu saat apakah panjang rambut mereka akan bisa sama panjang? Jika iya, pada bulan ke berapa hal itu terjadi? Berapa panjang rambut mereka ketika sama panjang?

Penyelesaian:

- Carilah rata-rata pertumbuhan rambut Lala dan Lili per bulan.

\[
\text{Rata-rata pertumbuhan rambut Lala} = \frac{26 - 16}{8 - 3} = \frac{10}{5} = 2 \text{ cm/bulan}
\]

\[
\text{Rata-rata pertumbuhan rambut Lili} = \frac{36 - 28}{8 - 3} = \frac{8}{5} = 1,6 \text{ cm/bulan}
\]

- Carilah panjang rambut Lala dan Lili mula-mula (bulan ke nol).

 Rambut Lala mula-mula = 16 – 3(2) = 10 cm
 Rambut Lili mula-mula = 28 – 3(1,6) = 23,2 cm

- Susun SPLDV panjang rambut Lala dan Lili

 Misal
 panjang rambut Lala setelah n bulan = 10 + 2n
 panjang rambut Lili setelah n bulan = 23,2 + 1,6n
 panjang rambut Lala dan Lili sama pada saat
 10 + 2n = 23,2 + 1,6n
 \[2n - 1,6n = 23,2 - 10\]
 \[0,4n = 13,2\]
 \[n = \frac{13,2}{0,4}\]
 \[n = 33\]

Jadi, rambut Lala dan Lili akan sama pada saat bulan ke 33 dengan panjang rambut 76 cm.
B. Menyelesaikan Model SPLDV dari suatu Permasalahan

Setelah mempelajari Sub Bab B ini diharapkan siswa dapat menjawab pertanyaan penting di bawah ini.

Bagaimana siswa menyelesaikan model Persamaan Linear Dua Variabel (PLDV) atau Sistem Persamaan Linear Dua Variabel (SPLDV) dari suatu permasalahan nyata? Minta siswa melakukan kegiatan-kegiatan berikut ini bersama temannya.

Minta siswa memikirkan masalah di bawah ini!

Di suatu daerah jaringan listrik mati hingga beberapa hari karena bencana alam, sehingga untuk penerangan mayoritas warga menggunakan lilin. Misalkan ada dua jenis lilin yaitu lilin pertama tingginya 25 cm meleleh rata-rata setinggi 1,5 cm per jam dan lilin kedua tingginya 30 cm meleleh rata-rata setinggi 2 cm per jam. Jika dinyalakan, masing-masing lilin akan habis setelah menyala berapa jam? Jika dinyalakan bersama-sama, kapan kedua lilin tersebut sama tinggi? Berapa tingginya? Selesaikan model SPLDV yang sudah siswa buat di Kegiatan 9.5 Sub Bab 9.1

Alternatif Penyelesaian:

Misalkan:

lama waktu lilin menyala adalah \(x \) jam,
tinggi lilin pertama setelah menyala selama \(x \) jam adalah \(y_1 \)
tinggi lilin kedua setelah menyala selama \(x \) jam adalah \(y_2 \)

Pada Kegiatan 9.5 Sub Bab 9.1 siswa sudah menyusun SPLDV untuk menyatakan tinggi lilin pertama dan lilin kedua setelah menyala selama \(x \) jam, yaitu

\[
\begin{align*}
 y_1 &= 25 - 1.5x \\
 y_2 &= 30 - 2x
\end{align*}
\]

(i)
(ii)
Gambarlah grafik dari persamaan linear (i) dan (ii) pada kertas berpetak dengan terlebih dulu mengisi tabel di bawah ini:

Untuk grafik persamaan (i) yaitu $y_1 = 25 - 1,5x$

\[
\begin{array}{c|c|c}
 x & 0 & 16 \frac{2}{3} \\
 y_1 & 25 & 0 \\
\end{array}
\]

Untuk grafik persamaan (ii) yaitu $y_2 = 30 - 2x$

\[
\begin{array}{c|c|c}
 x & 0 & 15 \\
 y_2 & 30 & 0 \\
\end{array}
\]

Berdasarkan grafik yang siswa buat, diketahui bahwa:

Titik potong grafik y_1 pada sumbu X adalah $x = 16 \frac{2}{3}$

Artinya lilin pertama akan habis setelah menyala selama $16 \frac{2}{3}$ jam.

Titik potong grafik y_2 pada sumbu X adalah $x = 15$

Artinya lilin kedua akan habis setelah menyala selama 15 jam.

Penyelesaian SPLDV tersebut adalah titik perpotongan antara kedua grafik tersebut, yaitu (10, 10)

Artinya lilin pertama dan kedua akan sama tinggi setelah menyala bersama-sama selama 10 jam, yaitu dengan tinggi lilin 10 cm.

Ayo Kita Menalar

Apakah setiap SPLDV mempunyai penyelesaian?
Berapa banyak penyelesaian yang mungkin dari suatu SPLDV?
Dapatkan hal itu dilihat dari grafik penyelesaiannya?
Dapatkan dilihat dari koefisien-koefien variabel dan konstanta dari kedua persamaan dalam SPLDV yang diberikan?
Coba siswa selidiki bersama kelompokmu.
Silakan mencari informasi mengenai hal ini dari sumber yang lain.
Kegiatan 9.6 Menyelesaikan SPLDV: Bisnis Rumah Kost

Kegiatan 9.6 Menyelesaikan SPLDV: Bisnis Rumah Kost

Minta siswa memikirkan masalah di bawah ini!

Bu Parti membuka bisnis rumah kost. Biaya untuk mendirikan 5 kamar kos yang bu Parti keluarkan sebesar Rp63.000.000,00. Biaya pembayaran listrik dan air PDAM per bulan untuk 5 penghuni kost (tiap kamar berisi 1 orang) diperkirakan sebesar Rp250.000,00. Bu Parti menentukan tarif kost tiap kamar sebesar Rp400.000,00 per bulan. Seandainya kamar kost selalu laku (tidak ada kamar kosong), berapa lama waktu yang diperlukan bu Parti untuk balik modal (break even point)? (Selesaikan model SPLDV yang sudah siswa buat di Kegiatan 9.2 Sub Bab A)

Alternatif Penyelesaian:

Misalkan:

lama waktu yang diperlukan adalah \(x \) bulan,
biaya yang dikeluarkan oleh bu Parti selama \(x \) bulan adalah \(B \) rupiah, dan
pendapatan yang diterima bu Parti selama \(x \) bulan adalah \(P \) rupiah.

Pada Kegiatan 9.6 Sub Bab 9.A siswa sudah menyusun PLDV untuk menyatakan biaya yang dikeluarkan oleh bu Parti dan pendapatan yang diterima bu Parti selama \(x \) bulan, yaitu

\[
\begin{align*}
y_1 &= B = 250.000x + 63.000.000 \\
y_2 &= P = 2.000.000x
\end{align*}
\]

(i) (ii)

Gambarlah grafik dari persamaan linear (i) dan (ii) pada kertas berpetak dengan terlebih dulu mengisi tabel di bawah ini:

Untuk grafik persamaan (i) yaitu \(y_1 = 250.000x + 63.000.000 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>63.000.000</td>
<td>64.500.000</td>
<td>66.000.000</td>
<td>72.000.000</td>
</tr>
</tbody>
</table>
Untuk grafik persamaan (ii) yaitu $y_2 = 2.000.000x$

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>6</th>
<th>12</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_2</td>
<td>0</td>
<td>12.000.000</td>
<td>24.000.000</td>
<td>72.000.000</td>
</tr>
</tbody>
</table>

Berdasarkan grafik yang siswa buat, diperoleh bahwa:

Penyelesaian SPLDV tersebut adalah titik perpotongan antara kedua grafik tersebut, yaitu (... , ...)

Artinya biaya dan pendapatan yang diterima bu Parti sama besar (break even point) pada bulan ke

Coba selesaikan masalah tersebut dengan metode substitusi. Apakah lebih mudah?

Kegiatan 9.7
Menyelesaikan SPLDV: Harga Mangga dan Apel

Kegiatan 9.7
Menyelesaikan SPLDV: Harga Mangga dan Apel

Minta siswa memikirkan masalah di bawah ini!

Ocha membelikan Ezra 3 kg mangga dan 4 kg apel dengan harga Rp98.000,00. Ia membeli lagi untuk keluarganya 2 kg mangga dan 2 kg apel yang sama di warung buah yang sama dan membayar lagi Rp52.000,00. Di jalan kemudian ia bertemu Al temannya dan ditanya “Berapa harga per kg mangga dan apel itu, Cha?” tetapi Ocha tidak tahu karena ia membeli tanpa menanyakan harganya per kg terlebih dahulu. Kira-kira bagaimana menjawab pertanyaan Al tersebut tanpa kembali ke warung buah tadi dan tanya ke pedagangnya? Bagaimana model SPLDV untuk masalah ini?

Untuk menyelesaikan masalah di atas pertama perlu dibuat modelnya dalam suatu sistem persamaan linear dua variabel (SPLDV). Permasalahan di atas dapat diilustrasikan dalam tabel di bawah ini:
Alternatif Penyelesaian:

Harga 1 kg mangga belum diketahui, maka dapat kita misalkan:

- harga 1 kg mangga = \(x \) rupiah.

Harga 1 kg apel juga belum diketahui, maka dapat kita misalkan:

- harga 1 kg apel = \(y \) rupiah.

Pada Kegiatan 3 di Sub Bab 9, A siswa sudah membuat model SPLDV untuk masalah ini sebagai berikut:

- harga 3 kg mangga + harga 4 kg apel = Rp98.000,00 \[\rightarrow \] \(\ldots x \) + \(\ldots y \) = 98.000 \((i) \)
- harga 2 kg mangga + harga 2 kg apel = Rp52.000,00 \[\rightarrow \] \(\ldots x \) + \(\ldots y \) = 52.000 \((ii) \)

Langkah 1:

Pilih salah satu persamaan dan nyatakan salah satu variabel dalam variabel lainnya yaitu \(x \) dalam bentuk \(y \) (atau \(y \) dalam bentuk \(x \))

Misalkan pilih persamaan (i)

\[
\begin{align*}
\ldots x + \ldots y &= 98.000 \\
\ldots x &= 98.000 - \ldots y \\
\ldots x &= \frac{(98.000 - \ldots y)}{\ldots y} \\
\end{align*}
\]

\((iii) \)
Langkah 2:
Substitusikan hasil Langkah 1 yaitu persamaan (iii) ke persamaan (ii)
\[\ldots x + \ldots y = 52.000 \]
\[\ldots \times 98.000 \longrightarrow \ldots y = 52.000 \]
Langkah 3:
Sederhanakan persamaan yang diperoleh pada Langkah 2 dan dapatkan nilai \(y \) (atau \(x \)) dengan persamaan tersebut.
\[\ldots \times 98.000 \longrightarrow \ldots y = 52.000 \]
\[\ldots y = \ldots \]
\[y = \ldots \]
Langkah 4:
Substitusikan nilai \(y = \ldots \) yang sudah diperoleh pada Langkah 3 ke persamaan yang diperoleh dari Langkah 1 dan selesaikan untuk mendapatkan nilai variabel \(x \)
\[x = \frac{98.000 - \ldots y}{\ldots} \]
\[x = \ldots \]
Langkah 5:
Periksa kembali nilai \(x \) dan \(y \) yang sudah diperoleh dengan menststitusikan nilai \(x \) dan \(y \) ke dalam persamaan semula yaitu persamaan (i) dan (ii).
\[x = \ldots \] dan \(y = \ldots \)
\[\ldots x + \ldots y = 98.000 \rightarrow \ldots \times \ldots + \ldots \times \ldots = 98.000 \] (benar/salah?)
\[\ldots x + \ldots y = 52.000 \rightarrow \ldots \times \ldots + \ldots \times \ldots = 52.000 \] (benar/salah?)
Jika nilai \(x \) dan \(y \) memenuhi persamaan (i) dan (ii), maka \((x, y)\) adalah penyelesaian SPLDV tersebut.

Ayo Kita Mencoba

Coba selesaikan masalah di atas dengan metode grafik.
Kegiatan 9.8
Membuat Model PLDV atau SPLDV: Tinggi Badan Si kembar

Minta siswa memikirkan masalah di bawah ini!

Yudi dan Yuda adalah saudara kembar yang mempunyai tinggi badan yang sama. Keempat balok pada gambar di bawah ini kongruen. (perhatikan gambar). Berapa tinggi badan si kembar? Nyatakan masalah tersebut dalam persamaan linear!

Alternatif Penyelesaian:
Misalkan:
- tinggi Yudi dan Yuda adalah \(h \) cm
- panjang balok adalah \(x \) cm

\[
\begin{align*}
&\text{\(x \) cm} \\
&\text{tinggi balok adalah \(y \) cm} \\
\end{align*}
\]

Lihat gambar sebelah kiri (Yudi), tinggi badan Yudi dapat dinyatakan dengan persamaan:

\[
h - \ldots + \ldots = 172 \quad \rightarrow \quad h = \ldots - \ldots + 172 \quad \text{(i)}
\]

Lihat gambar sebelah kiri (Yuda), tinggi badan Yuda dapat dinyatakan dengan persamaan:

\[
h - \ldots + \ldots = 187 \quad \rightarrow \quad h = \ldots - \ldots + 187 \quad \text{(ii)}
\]
Jumlahkan persamaan (i) dan (ii),

\[h = \ldots - \ldots + 172 \]
\[h = \ldots - \ldots + 187 \]
\[2h = \ldots \]
\[h = \ldots \]

Jadi, tinggi Yudi dan Yuda adalah \ldots \ cm.

Ayo Kita Mencoba

Coba selesaikan masalah di atas dengan metode grafik atau metode substitusi.

Materi Esensi

Menyelesaikan Sistem Persamaan Linear Dua Variabel

Pada Materi Esensi ini akan dibahas megenai cara untuk menyelesaikan Sistem Persamaan Linear dua Variabel (SPLDV) dengan metode grafik, metode substitusi, dan metode eliminasi. Arahkan siswa untuk membuat memahami setiap langkah dalam menyelesaikan Sistem Persamaan Linear Dua Variabel dari kegiatan-kegiatan yang telah dilakukan sebelumnya. Berikan kesempatan kepada siswa untuk bertanya dan berdiskusi. Berikan penjelasan secukupnya kepada siswa yang belum memahami materi dengan baik.

Materi Esensi

Menyelesaikan Sistem Persamaan Linear Dua Variabel

Bentuk umum SPLDV:

\[a_1x + b_1y = c_1 \] (i)
\[a_2x + b_2y = c_2 \] (ii)

Langkah-langkah penyelesaian SPLDV dengan metode grafik

Langkah 1:

Gambarlah bidang koordinat kartesius.
Langkah 2:

Gambarlah grafik untuk persamaan (i) dan (ii) dengan terlebih dulu mengisi tabel seperti di bawah ini

Grafik 1: \(a_1x + b_1y = c_1 \)

| \(x \) | 0 | \(c_1/a_1 \) |
| \(y \) | \(c_1/b_1 \) | 0 |

Diperoleh titik potong grafik \(a_1x + b_1y = c_1 \) pada sumbu \(Y \) yaitu \((0, c_1/b_1) \) dan titik potong pada sumbu \(X \) yaitu \((c_1/a_1, 0) \)

Plot kedua titik tersebut pada bidang koordinat dan hubungkan kedua titik itu sehingga terbentuk garis lurus untuk persamaan (i)

Grafik 2: \(a_2x + b_2y = c_2 \)

| \(x \) | 0 | \(c_2/a_2 \) |
| \(y \) | \(c_2/b_2 \) | 0 |

Diperoleh titik potong grafik \(a_2x + b_2y = c_2 \) pada sumbu \(Y \) yaitu \((0, c_2/b_2) \) dan titik potong pada sumbu \(X \) yaitu \((c_2/a_2, 0) \)

Plot kedua titik tersebut pada bidang koordinat dan hubungkan kedua titik itu sehingga terbentuk garis lurus untuk persamaan (ii)

Langkah 3:

Perikakan titik potong kedua grafik yang dihasilkan pada Langkah 2. Titik potong tersebut adalah penyelesaian SPLDV itu.

Langkah 4:

Periksa kembali nilai \(x \) dan \(y \) yang sudah diperoleh dengan menstsubstitusikan nilai \(x \) dan \(y \) ke dalam persamaan semula yaitu persamaan (i) dan (ii).

Jika nilai \(x \) dan \(y \) memenuhi persamaan (i) dan (ii), maka \((x, y) \) adalah penyelesaian SPLDV tersebut.

Penyelesaian secara grafik tidak selalu menghasilkan penyelesaian yang tepat, tergantung pada ketepatan dalam menggambar grafiknya.

1. SPLDV mempunyai penyelesaian tunggal (kedua grafik berpotongan di 1 titik)
 Contoh:
 \[
 \begin{align*}
 2x + y &= 14 \\
 2x - y &= 6
 \end{align*}
 \]

2. SPLDV mempunyai penyelesaian sebanyak tak hingga (kedua grafik berimpit)
 Contoh:
 \[
 \begin{align*}
 2x - y &= -5 \\
 6x - 3y &= -15
 \end{align*}
 \]

3. SPLDV tidak mempunyai penyelesaian (kedua grafik sejajar)
 Contoh:
 \[
 \begin{align*}
 2x - y &= -5 \\
 6x - 3y &= 3
 \end{align*}
 \]
Langkah-langkah penyelesaian SPLDV dengan metode substitusi

Langkah 1:
Pilih salah satu persamaan dan nyatakan salah satu variabel dalam variabel lainnya yaitu \(x \) dalam bentuk \(y \) (atau \(y \) dalam bentuk \(x \))

Langkah 2:
Substitusikan hasil Langkah 1 ke persamaan lainnya

Langkah 3:
Sederhanakan persamaan yang diperoleh pada Langkah 2 dan dapatkan nilai \(x \) (atau \(y \)) dengan persamaan tersebut.

Langkah 4:
Substitusikan nilai \(x \) (atau \(y \)) yang sudah diperoleh pada Langkah 3 ke persamaan yang diperoleh dari Langkah 1 dan selesaikan untuk mendapatkan nilai variabel \(y \) (atau \(x \))

Langkah 5:
Periksa kembali nilai \(x \) dan \(y \) yang sudah diperoleh dengan menstubstitusikan nilai \(x \) dan \(y \) ke dalam persamaan semula yaitu persamaan (i) dan (ii).

Jika nilai \(x \) dan \(y \) memenuhi persamaan (i) dan (ii), maka \((x, y) \) adalah penyelesaian SPLDV tersebut.

Langkah-langkah penyelesaian SPLDV dengan metode eliminasi

Langkah 1:
Tulis kedua persamaan dalam bentuk \(ax + by = c \)

Langkah 2:
Jika pada kedua persamaan koefisien dari salah satu variabel misal \(x \) (atau \(y \)) belum sama, maka samakanlah dengan mengalikan persamaan dengan bilangan yang sesuai.

Langkah 3:
Jumlahkan atau kurangkan kedua persamaan yang diperoleh pada Langkah 2 untuk memperoleh persamaan dalam satu variabel yaitu \(y \) (atau \(x \)) dan selesaikan untuk mendapatkan nilai variabel tersebut.

Langkah 4:
Substitusikan nilai \(y \) (atau \(x \)) yang sudah diperoleh pada Langkah 3 ke salah satu persamaan (i) atau (ii) dan dapatkan nilai variabel \(x \) (atau \(y \))

Langkah 5:
Periksa kembali nilai \(x \) dan \(y \) yang sudah diperoleh dengan menstubstitusikan nilai \(x \) dan \(y \) ke dalam persamaan semula yaitu persamaan (i) dan (ii).
Jika nilai \(x \) dan \(y \) memenuhi persamaan (i) dan (ii), maka \((x, y)\) adalah penyelesaian SPLDV tersebut.

Contoh 9.4

Tebak Angka (1)

Contoh 9.4

Tebak Angka (1)

Dua buah angka jumlahnya 80. Selisih kedua bilangan itu adalah 30. Berapa angka itu masing-masing?

Alternatif Penyelesaian:

Misalkan:

- angka pertama (yang lebih besar) adalah \(x \)
- angka kedua adalah \(y \)

Dua buah angka jumlahnya 80 → \(x + y = 80 \)
Selisihnya adalah 30 → \(x - y = 30 \)

Gambarlah grafik untuk persamaan (i) dan (ii) dengan terlebih dulu mengisi tabel seperti di bawah ini

Grafik 1: \(y = 80 - x \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>

Diperoleh titik potong grafik \(y = 80 - x \) pada sumbu \(Y \) yaitu \((0, 80)\) dan titik potong pada sumbu \(X \) yaitu \((80, 0)\)

Grafik 2: \(y = x - 30 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-30</td>
<td>0</td>
</tr>
</tbody>
</table>
Diperoleh titik potong grafik \(y = x - 30 \) pada sumbu \(Y \) yaitu \((0, -30)\) dan titik potong pada sumbu \(X \) yaitu \((30, 0)\)

\[y = x - 30 \]

Dari grafik di atas dapat dilihat bahwa penyelesaiannya adalah \(x = 65 \) dan \(y = 25 \)

Jadi, bilangan yang dimaksud adalah 65 dan 25.

Contoh 9.5

Tebak Angka (2)

Jumlah dua angka (digit) dari suatu angka puluhan adalah 9. Angka itu dikalikan 9 sama dengan dua kali bilangan itu jika angka dua angka itu ditukar urutannya. Berapakah angka tersebut?

Alternatif Penyelesaian:

Misalkan

- angka kedua (angka satuan) adalah \(x \)
- angka pertama (angka puluhan) adalah \(y \)

Bilangan itu adalah

\[
\begin{array}{c|c}
\hline
x & y \\
\hline
\end{array}
\]

Bilangan itu adalah \(10y + x \)

\[“jumah dua digit bilangan itu adalah 9” \rightarrow y + x = 9 \] (i)

\[\begin{array}{c|c|c}
\hline
y & x & \text{Jika ditukar urutannya menjadi} \\
\hline
\end{array} \]

\[\begin{array}{c|c|c}
\hline
x & y \\
\hline
\end{array} \]
“Angka itu dikali 9” dapat ditulis dengan → 9(10y + x)
“Dua kali bilangan itu jika bilangan dua digit itu ditukar urutannya”
dapat ditulis dengan → 2(10x + y)
sehingga,

“Angka itu dikalikan 9 sama dengan dua kali angka itu jika bilangan dua digit itu
ditukar urutannya” dapat ditulis dengan → 9(10y + x) = 2(10x + y)

90y + 9x = 20x + 2y
90y - 2y + 9x - 20x = 0
88y - 11x = 0

Jadi masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel
(SPLDV) yang terdiri dari persamaan (i) dan (ii)

\[
\begin{align*}
y + x &= 9 \\ 88y - 11x &= 0
\end{align*}
\]

SPLDV di atas akan diselesaikan dengan metode substitusi

\[y + x = 9 \rightarrow y = 9 - x\]

Substitusikan \(y = 9 - x\) ke persamaan (ii)

\[
\begin{align*}
88y - 11x &= 0 \\
88(9 - x) - 11x &= 0 \\
792 - 88x - 11x &= 0 \\
792 - 99x &= 0 \\
-99x &= -792 \\
\frac{-99x}{-99} &= \frac{-792}{-99} \\
x &= 8
\end{align*}
\]

Substitusikan \(x = 8\) ke persamaan \(y = 9 - x\)

\[
\begin{align*}
y &= 9 - x \\
y &= 9 - 8 \\
y &= 1
\end{align*}
\]

Jadi, bilangan itu adalah 18. (coba periksa, apakah \(18 \times 9 = 2 \times 81\)?)
Coba selesaikan dengan metode grafik atau metode eliminasi.

Ayo Kita Mencoba

Contoh 9.6
Usia Ayah dan Anaknya

Contoh 9.6
Usia Ayah dan Anaknya

Sepuluh tahun yang lalu usia ayah Ika adalah empat kali usia Ika. Enam tahun yang akan datang usia ayah Ika adalah dua kali usia Ika. Berapa usia Ika dan ayahnya sekarang? Nyatakan permasalahan tersebut dalam Sistem Persamaan Linear Dua Variabel (SPLDV) terlebih dulu!

Alternatif Penyelesaian:

Langkah 1:
Besaran yang belum diketahui dan harus dicari adalah:
- usia ayah Ika sekarang
- usia Ika sekarang

Langkah 2:
Misalkan
Usia ayah Ika sekarang adalah \(x \)
Usia Ika sekarang adalah \(y \)

Langkah 3:
usia ayah Ika sepuluh tahun lalu adalah \(x - 10 \)
usia Ika sepuluh tahun lalu adalah \(y - 10 \)

“Sepuluh tahun yang lalu usia ayah Ika adalah empat kali usia Ika” dapat dinyatakan dengan:
x \ - \ 10 = 4(y - 10) \\
\hspace{1cm} x \ - \ 10 = 4y - 40 \\
\hspace{1cm} x \ - \ 4y = -40 + 10 \\
\hspace{1cm} x \ - \ 4y = -30 \quad \text{(i)}

usia ayah Ika enam tahun yang akan datang adalah \(x + 6 \)

usia Ika enam tahun yang akan datang adalah \(y + 6 \)

“\textit{Enam tahun yang akan datang usia ayah Ika adalah dua kali usia Ika}” dapat dinyatakan dengan:

\[
x + 6 = 2(y + 6) \\
x + 6 = 2y + 12 \\
x - 2y = 12 - 6 \\
x - 2y = 6 \quad \text{(ii)}
\]

Jadi masalah di atas dapat dinyatakan dengan Sistem Persamaan Linear Dua Variabel (SPLDV) yang terdiri dari persamaan (i) dan (ii):

\[
\begin{align*}
x - 4y &= -30 \\
x - 2y &= 6
\end{align*}
\]

karena koeefisien \(x \) pada SPLDV di atas sudah sama, akan lebih efisien jika SPLDV tersebut diselesaikan dengan metode eliminasi. (variabel \(x \) dapat dieliminasi dengan mengurangkan kedua persamaan tersebut.

\[
\begin{align*}
x - 4y &= -30 \\
x - 2y &= 6 \\
\hline
-2y &= -36 \\
y &= 18
\end{align*}
\]

substitusikan \(y = 18 \) ke salah satu persamaan di atas, misalnya persamaan (ii)

\[
\begin{align*}
x - 2y &= 6 \quad \rightarrow \quad x - 2(18) &= 6 \\
x &= 6 + 36 \\
x &= 42
\end{align*}
\]

Jadi, usia Ika adalah 18 tahun dan ayahnya adalah 42 tahun.
Ayo Kita Mencoba

Latihan 9.2
Menyelesaikan Masalah yang Berkaitan dengan SPLDV

Sedangkan penilaian aspek sikap dan keterampilannya dapat diambil melalui pengamatan (penilaian guru, teman sejawat atau diri sendiri) pada saat siswa bersama kelompoknya melakukan kegiatan-kegiatan dalam Sub bab B.

Selesaikan Masalah yang berkaitan dengan Sistem Persamaan Linear Dua Variabel berikut.

1. Jumlah dua bilangan cacah adalah 1.100, sedangkan selisih kedua bilangan itu adalah 722. Berapakah bilangan itu masing-masing?

Penyelesaian:

Misal:

Bilangan pertama (terbesar) = \(x\)
Bilangan kedua (terkecil) = \(y\)

\[\begin{align*}
 x + y &= 1.100 \\
 x - y &= 722
\end{align*}\]

Silakan selesaikan SPLDV tersebut.
Dari penyelesaian SPLDV tersebut \(x = 911\) dan \(y = 189\).
2. Harga 4 ekor ayam dan 5 ekor bebek adalah Rp530.000,00, sedangkan harga 3 ekor bebek dan 2 ekor ayam adalah Rp300.000,00. Berapa harga seekor bebek?

Penyelesaian:

Misal:
Harga 1 ekor ayam = x rupiah
Harga 1 ekor bebek = y rupiah

SPLDV untuk permasalahan tersebut:

\[4x + 5y = 530.000\]
\[3x + 2y = 300.000\]

Silakan selesaikan SPLDV tersebut.

Dari penyelesaian SPLDV diperoleh harga seekor bebek = \(y = \text{Rp}70.000,00\)

3. Paul mentraktir temannya untuk minum kopi dan makan kue di suatu tempat karena ia membeli 5 cangkir kopi dan 4 porsi kue dengan harga Rp220.000,00. Di kesempatan yang lain ia membeli lagi 2 cangkir kopi dan 2 porsi kue yang sama dengan harga Rp94.000,00. Berapa harga secangkir kopi?

Penyelesaian:

Misal:
Harga 1 cangkir kopi = x rupiah
Harga 1 porsi kue = y rupiah

SPLDV untuk permasalahan tersebut:

\[5x + 4y = 220.000\]
\[2x + 2y = 94.000\]

Silakan selesaikan SPLDV tersebut.

Dari penyelesaian SPLDV diperoleh harga secangkir kopi = \(x = \text{Rp}40.000,00\)

4. Memberi Sumbangan

Fahim dan Hafidz ingin menyumbang korban banjir dengan uang tabungannya. Jumlah uang Fahim dan uang Hafidz yang mau disumbangkan adalah Rp220.000,00. Jika uang Fahim Rp80.000,00 lebih sedikit dari uang Hafidz. Berapakah uang Fahim?

Sumber: Dokumen Kemdikbud
Penyelesaian:
Misal:
Uang Fahim = x rupiah
Uang Hafidz = y rupiah
SPLDV untuk permasalahan tersebut:
\[x + y = 220.000 \]
\[y - x = 80.000 \]
Silakan selesaikan SPLDV tersebut.
Dari penyelesaian SPLDV diperoleh $x =$ uang Fahim = Rp150.000,00

5. Luas Persegipanjang
Luas suatu persegipanjang akan berkurang sebesar 80 cm2 jika panjangnya dikurangi 5 cm dan lebarnya ditambah 2 cm. Jika panjangnya ditambah 10 cm dan lebarnya dikurangi 5 cm, luasnya bertambah sebesar 50 cm2. Berapa ukuran persegi panjang itu mula-mula?

Penyelesaian:
Misal:
Panjang persegi panjang = p cm
Lebar persegi panjang = l cm
SPLDV untuk permasalahan tersebut:
\[(p - 5)(l + 2) = pl - 80 \iff pl + 2p - 5l - 10 = pl - 80 \iff 2p - 5l = -70 \]
\[(p + 10)(l - 5) = pl + 50 \iff pl - 5p + 10l - 50 = pl + 50 \iff -5p + 10l = 100 \]
Silakan selesaikan SPLDV tersebut.
Dari penyelesaian SPLDV diperoleh panjang persegi panjang itu $p = 40$ cm

6. Bunga
Rani dan Sari membeli bunga untuk hadiah adik-adik kelasnya yang diwisuda. Rani membeli 4 tangkai mawar dan 6 tangkai tulip dengan harga Rp242.000,00. Sari membeli 8 tangkai mawar dan 2 tangkai tulip yang sama di toko bunga yang sama Rp214.000,00. Berapa harga setangkai tulip?

Penyelesaian:
Misal:
Harga 1 tangkai bunga mawar = x rupiah
Harga 1 tangkai bunga tulip = y rupiah

Sumber: Dokumen Kemdikbud
SPLDV untuk permasalahan tersebut:

\[4x + 6y = 242.000\]
\[8x + 2y = 214.000\]

Silakan selesaikan SPLDV tersebut.

Dari penyelesaian SPLDV diperoleh

harga setangkai bunga tulip = \(y = \text{Rp}27,000,00\)

7. **Perbandingan Usia**

Perbandingan usia Neni dan Wati empat tahun lalu adalah 5 : 7. Perbandingan usia Neni dan Wati delapan tahun yang akan datang adalah 4 : 5. Berapa usia mereka masing-masing saat ini?

Penyelesaian:

Misal:

Usia Neni sekarang = \(n\) tahun

Usia Wati sekarang = \(w\) tahun

SPLDV untuk permasalahan tersebut:

\[(n - 4) : (w - 4) = 5 : 7 \iff 7(n - 4) = 5(w - 4) \iff 7n - 5w = 8\]
\[(n + 8) : (w + 8) = 4 : 5 \iff 5(n + 8) = 4(w + 8) \iff 5n - 4w = -8\]

Silakan selesaikan SPLDV tersebut.

Dari penyelesaian SPLDV diperoleh

usia Neni = \(n = 24\) tahun, usia Wati = \(w = 32\) tahun

8. **Berpikir Kritis**

Suatu pekerjaan dapat menyelesaikan oleh 8 orang laki-laki dan 12 orang perempuan dalam waktu 10 hari. Sedangkan jika dikerjakan oleh 6 orang laki-laki dan 8 orang perempuan pekerjaan itu selesai dalam waktu 14 hari. Berapa waktu yang diperlukan untuk menyelesaikan pekerjaan itu jika dikerjakan oleh:

a. seorang laki-laki saja?

b. Seorang perempuan saja?

9. **Berpikir Kritis**

Ina mempunyai toko sepatu. Untuk jenis sepatu tertentu, jika Ina menjual 2 pasang sepatu lebih banyak ia memperoleh jumlah uang yang sama. Harga jual setiap pasang sepatu adalah \(\text{Rp. 20,000,00}\) lebih murah dari harga jual normalnya. Jika Ina menjual sepatu 2 pasang lebih sedikit ia juga

Sumber: Dokumen Kemdikbud
memperoleh jumlah uang yang sama, harga jual setiap pasang sepatu Rp. 40.000,00 lebih mahal dari harga jual normalnya.

a. Berapa pasang sepatu yang dijual Ina untuk jenis tersebut?
b. Berapa harga jual normal sepasang sepatu itu?

Penyelesaian:

Misal:

Banyak sepatu yang dijual = n buah
Harga jual 1 sepatu (normal)= x rupiah

Sehingga uang yang diperoleh dari penjualan n buah sepatu = xn rupiah

SPLDV untuk permasalahan tersebut:

\[(x - 20.000)(n + 2) = xn \iff xn - 20.000n + 2x - 40.000 = xn\]
\[\iff -20.000n + 2x = 40.000 \quad \text{(i)}\]

\[(x + 40.000) (n - 2) = xn \iff xn + 40.000n - 2x - 80.000 = xn\]
\[\iff 40.000n + 2x = 80.000 \quad \text{(ii)}\]

Silakan selesaikan SPLDV tersebut.

Dari penyelesaian SPLDV diperoleh

banyak sepatu yang dijual = n = 6 sepatu
harga jual normal 1 sepatu = x = Rp80.000,00

10. Berpikir Kritis

Lala dan Lili bersepakat untuk memanjakan rambutnya hingga beberapa tahun mendatang. Tabel di bawah ini menunjukkan panjang rambut mereka pada bulan yang berbeda:

<table>
<thead>
<tr>
<th>Bulan</th>
<th>Panjang Rambut (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lala</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
</tr>
</tbody>
</table>

Suatu saat apakah panjang rambut mereka akan bisa sama panjang? Jika iya, pada bulan ke berapa hal itu terjadi? Berapa panjang rambut mereka ketika sama panjang?
Penyelesaian:
- Carilah rata-rata pertumbuhan rambut Lala dan Lili per bulan.

\[
\text{Rata-rata pertumbuhan rambut Lala} = \frac{26 - 16}{8 - 3} = \frac{10}{5} = 2 \text{ cm/bulan}
\]

\[
\text{Rata-rata pertumbuhan rambut Lili} = \frac{36 - 28}{8 - 3} = \frac{8}{5} = 1,6 \text{ cm/bulan}
\]

- Carilah panjang rambut Lala dan Lili mula-mula (bulan ke nol).

Rambut Lala mula-mula = \(16 - 3(2) = 10\) cm

Rambut Lili mula-mula = \(28 - 3(1,6) = 23,2\) cm

- Susun SPLDV panjang rambut Lala dan Lili

Misal
panjang rambut Lala setelah \(n\) bulan = \(10 + 2n\)
panjang rambut Lili setelah \(n\) bulan = \(23,2 + 1,6n\)
panjang rambut Lala dan Lili sama pada saat
\[
10 + 2n = 23,2 + 1,6n
\]
\[
\implies 2n - 1,6n = 23,2 - 10
\]
\[
\implies 0,4n = 13,2
\]
\[
\implies n = \frac{13,2}{0,4}
\]
\[
\implies n = 33
\]

Jadi, rambut Lala dan Lili akan sama pada saat bulan ke 33 dengan panjang rambut 76 cm.

Proyek 9

Minta siswa menyelesaikan masalah di bawah ini bersama temannya.
Suatu toko baju menjual paket kaos. Harga kaos paket “We Love Indonesia” tertera seperti tabel di bawah ini:

<table>
<thead>
<tr>
<th>Warna</th>
<th>Harga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merah</td>
<td>Rp215.000,00</td>
</tr>
<tr>
<td>Hijau</td>
<td>Rp215.000,00</td>
</tr>
<tr>
<td>Kuning</td>
<td>Rp220.000,00</td>
</tr>
<tr>
<td>Ungu</td>
<td>Rp210.000,00</td>
</tr>
<tr>
<td>Biru</td>
<td>Rp280.000,00</td>
</tr>
<tr>
<td>Toska</td>
<td>Rp290.000,00</td>
</tr>
<tr>
<td>Krem</td>
<td>Rp290.000,00</td>
</tr>
</tbody>
</table>

Jika membeli secara paket akan diberikan diskon sebesar 20%. Kaos dapat dibeli secara terpisah, namun jika beli secara terpisah tidak ada diskon. Berapa harga masing-masing kaos jika dibeli secara terpisah (eceran)?

Paparkan cara atau strategi yang digunakan serta penyelesaiannya secara sistematis dalam powerpoint dan presentasikan di kelas.
Uji Kompetensi 9
Sistem Persamaan Linear Dua Variabel

1. Uji Kompetensi 9 dapat digunakan sebagai Ulangan Harian untuk mengetahui kompetensi yang telah dicapai siswa berkaitan dengan Sistem Persamaan Linear Dua Variabel.
2. Jika memungkinkan guru dapat membuat soal lain agar lebih bervariasi untuk Uji Kompetensi.
3. Siswa sudah tuntas apabila sudah mencapai nilai 75 dan siswa diberi soal tambahan yang lebih menantang, dan apabila masih kurang dari 75 maka guru melakukan pembelajaran remedial sebelum melanjutkan ke materi

Selesaikan Masalah yang berkaitan dengan Sistem Persamaan Linear Dua Variabel berikut.

1. Pada suatu tempat parkir hanya terdapat mobil dan sepeda motor. Seorang penjaga parkir mengamati tempat parkir tersebut dan diperoleh informasi:
 a. Terdapat 40 kendaraan.
 b. Banyaknya roda adalah 100

 Tentukan banyaknya mobil dan sepeda motor dalam tempat parkir tersebut.
 Penyelesaian: banyak mobil = 10 dan banyak motor = 30

2. Terdapat dua bilangan bulat positif yang memenuhi:
 a. Selisih kuadrat dari kedua bilangan tersebut adalah 2013.
 b. Selisih kedua bilangan tersebut adalah 33.

 Tentukan kedua bilangan tersebut.
 Penyelesaian: bilangan tersebut adalah 47 dan 14

a. Tentukan SPLDV berdasarkan kasus diatas.
b. Tentukan banyaknya siswa dan permen.

Penyelesaian:
Misal: banyak siswa = x, banyak permen = y

SPLDV untuk masalah di atas:

$3(x - 5) = y$

$2x + 5 = y$

banyak siswa = 20 orang, banyak permen = 45 buah

a. $2x - 3y = 4$
 $x + 4y = 13$

b. $3x + 2y = 7$
 $9x + 6y = 12$

c. $-2x + 5y = 3$
 $4x - 10y = -6$

Penyelesaian:

(a) mempunyai penyelesaian tunggal, (b) tidak mempunyai penyelesaian, (c) mempunyai banyak penyelesaian (tak berhingga)

5. **Tantangan.**

Terdapat SPLDV

$2x - 3y = -5$

$-x + 4y = 10$

Tentukan bagaimana cara untuk mendapatkan nilai $x + y$ tanpa mencari nilai x dan y.

Penyelesaian:

jumlahkan kedua persamaan tersebut akan diperoleh $x + y = 5$

a. Tentukan SPLDV dari kasus di atas.

b. Tentukan perbandingan banyaknya kelereng Ani dengan banyaknya kelereng Ina mula-mula.

Penyelesaian:

a. Misal:

 banyak kelereng Ani mula-mula = \(a \), banyak kelereng Ina mula-mula = \(i \)

 SPLDV untuk masalah di atas adalah:

 \[a - 10 = 2(i + 10) \]

 \[a - 5 = 2(i + 10) \]

b. Banyak kelereng Ani mula-mula = \(a = 50 \) buah,

 Banyak kelereng Ina mula-mula = \(i = 10 \) buah.

7. Tentukan bilangan bulat positif \(x, y \) yang memenuhi.

 \[xy = (x - 3)(y + 5) = (x - 2)(y + 3) \]

 Penyelesaian: \(x = 12 \) dan \(y = 15 \)

8. Tentukan bilangan bulat yang memenuhi

 \[123x + 321y = 567 \]

 \[321x + 123y = 765 \]

 Penyelesaian: \(x = 2 \) dan \(y = 1 \)

 Penyelesaian: bilangan tersebut adalah 345
10. Mufid mempunyai sebuah bilangan pecahan, kemudian dia mengatakan “jika pembilang dari pecahan milikku dikurangi dengan 2 maka nilainya menjadi \(\frac{1}{4} \). Tapi jika pembilang dari pecahanku tersebut ditambah dengan 2 maka nilainya menjadi \(\frac{1}{3} \)”. Setelah itu Mufid bertanya kepada teman-temannya, “Berapakah selisih penyebut dan pembilang dari bilangan pecahan milikku?” Bantulah teman-teman Mufid untuk menjawab pertanyaan tersebut.

Penyelesaian: pembilang = 14, penyebut = 48, selisihnya = 48 – 14 = 34

Penyelesaian:

usia Wina adalah 32 tahun, Hafidz 24 tahun, Paul 28 tahun, Fahim 26 tahun.

12. Leo mempunyai hobi memelihara burung kenari. Ia memiliki cukup banyak burung kenari di rumahnya. Ia memasukkan burung-burung tersebut ke dalam beberapa sangkar. Jika ke dalam setiap sangkar dimasukkan 7 ekor burung, maka akan tertinggal 1 ekor burung kenari di luar. Tetapi jika Leo memasukkan 9 ekor burung ke dalam setiap sangkar, maka akan terdapat 1 buah sangkar yang tidak terisi sama sekali. Berapa banyak burung kenari yang dimiliki oleh Leo?

Penyelesaian:

Misal:

Banyak sangkar milik Leo = \(x \) dan banyak burung kenari milik Leo = \(y \)

SPLDV untuk masalah di atas adalah:

\[7x + 1 = y \]
\[9(x - 1) = y \]

Silakan selesaikan SPLDV tersebut, akan diperoleh penyelesaian banyak burung kenari milik Leo adalah 36 ekor.

Penyelesaian:
Misal:
usia Tomi sekarang = \(t \)
usia Jerry sekarang = \(j \)
SPLDV untuk masalah di atas adalah:
\[
(t - 5):(j - 5) = 5 : 6 \Leftrightarrow 6(t - 5) = 5(j - 5) = \Leftrightarrow 6t - 5j = 5
\]
\[
(t + 10):(j + 10) = 8 : 9 \Leftrightarrow 9(t + 10) = 8(j + 10) \Leftrightarrow 9t - 8j = -10
\]
Silakan selesaikan SPLDV tersebut, akan diperoleh penyelesaian:
Usia Tomi = 30 tahun dan Jerry 35 tahun.

14. Seminggu yang lalu Aldo membeli sejumlah bolpoin dan pensil di toko alat tulis Mantap Jaya. Saat itu ia membeli 5 buah bolpoin dan 4 buah pensil. Ketika membayar di kasir, ia memberikan 3 lembar uang pecahan Rp10.000,00 dan ia mendapatkan uang kembalian sebesar Rp2.500,00. Tiga hari kemudian ia membeli 3 buah bolpoin dan 6 buah pensil di toko yang sama sehingga Rp25.500,00. Sekarang Aldo diberikan uang satu lembar pecahan Rp50.000,00 oleh ibunya. Ia diminta untuk membeli beberapa buah bolpoin dan pensil dengan jumlah total 15 buah. Ada 2 pilihan yang diberikan oleh ibu, yaitu membeli 8 buah bolpoin dan 7 buah pensil atau membeli 5 buah bolpoin dan 10 buah pensil. Sisa uang kembalian dari pembelian tersebut menjadi hak Aldo untuk ditabung. Jika Aldo menginginkan lebih banyak uang kembalian agar bisa ditabung, pilihan manakah yang sebaiknya dipilih oleh Aldo?

Penyelesaian:
Memilih membeli 5 bolpoin dan 10 pensil.

Penyelesaian:

Misal kecepatan perahu = \(p \) km/jam dan kecepatan aliran sungai = \(s \) km/jam.

SPLDV untuk masalah di atas adalah:

\[
\begin{align*}
\frac{p + s}{2} &= \frac{50}{2} \\
\frac{p - s}{3} &= \frac{51}{3}
\end{align*}
\]

Silakan selesaikan SPLDV tersebut, akan diperoleh:

kecepatan perahu = 21 km/jam dan kecepatan aliran sungai = 4 km/jam.

Penyelesaian:

Banyak kelereng Aldo mula-mula = 33 butir

Banyak kelereng Brandon mula-mula = 55 butir

Penyelesaian:

Misal

banyak kelinci jantan = \(j \) ekor

banyak kelinci jantan = \(b \) ekor

SPLDV untuk masalah di atas adalah

\[
\begin{align*}
\frac{j - 9}{b} &= \frac{1}{2} & \iff & & 2j - b &= 18 \\
\frac{b - 22}{j} &= \frac{1}{3} & \iff & & -j + 3b &= 66
\end{align*}
\]
Penyelesaian SPLDV tersebut adalah \(j = 24 \) dan \(b = 30 \)
Jadi, banyak kelinci betina mula-mula adalah 30 ekor.

Penyelesaian:

Usia kakek (dua angka) = 10\(x\) + \(y\)
Usia ayah = 10\(y\) + \(x\)
Usia adik = \(y\) + \(x\)

Jumlah usia ketiganya = 10\(x\) + \(y\) + 10\(y\) + \(x\) + \(y\) + \(x\) = 144

\[12x + 12y = 144 \]
\[x + y = 12 \] (i)

2(usia kakek) + 3(usia ayah) = 312 \[\iff 2(10x + y) + 3(10y + x) = 312 \]
\[20x + 2y + 30y + 3x = 312 \]
\[23x + 32y = 312 \] (ii)

Silakan cari penyelesaian SPLDV di atas, akan diperoleh bahwa: \(x = 8\) dan \(y = 4\).

Jadi, usia kakek = 84 tahun, usia ayah = 48 tahun, dan usia adik = 12 tahun

19. Di dalam suatu organisasi, diketahui bahwa \(\frac{3}{5}\) bagian anggotanya merupakan perempuan. Kemudian, 10 orang anggota baru ikut mendaftar ke dalam organisasi tersebut yang terdiri atas 5 orang laki-laki dan 5 orang perempuan. Saat ini, \(\frac{3}{7}\) bagian anggotanya adalah laki-laki. Berapakah banyak seluruh anggota dalam organisasi tersebut mula-mula?

Penyelesaian:

banyak anggota dalam organisasi tersebut mula-mula = 25 orang

Penyelesaian: pukul 08.30
Fungsi kuadrat adalah suatu fungsi yang berbentuk \(f(x) = ax^2 + bx + c \). Grafik fungsi ini berbentuk parabola yang memiliki nilai optimum. Dalam aplikasi dunia nyata ini sangat berguna.

1. Menghargai dan menghayati ajaran agama yang dianutnya.
2. Memiliki rasa ingin tahu, percaya diri dan keterkaitan pada matematika serta memiliki rasa pada daya dan kegunaan matematika yang terbentuk melalui pengalaman belajar.
3. Menganalisis sifat-sifat fungsi kuadrat ditinjau dari koefisien dan determinannya.

1. Menentukan grafik dari fungsi kuadrat.
2. Menentukan sumbu simetri dan nilai optimum.
3. Menentukan fungsi kuadrat.
4. Menjelaskan aplikasi dari fungsi kuadrat.
Sistem Koordinat

- Grafik Fungsi Kuadrat
- Menentukan Fungsi Kuadrat

- Sumbu Simetri dan Nilai Optimum
- Aplikasi Fungsi Kuadrat

Selain terkenal sebagai seorang ahli matematika yang agung, ia juga adalah astronomer dan geografer yang hebat. Berkat kehebatannya, Khwarizmi terpilih sebagai ilmuwan penting di pusat keilmuwan yang paling bergengsi pada zamannya, yakni Baital-Hikmah atau House of Wisdom yang didirikan Khalifah Abbasiyah di Metropolis Intelektual World, Baghdad.

Sumber: www.edulens.org

Hikmah yang bisa diambil
1. Kita harus jeli melakukan pengamatan fenomena yang ada di sekitar kita.
2. Kita harus mau dan mampu melakukan pembuktian-pembuktian tentang fenomena alam sekitar yang merupakan bukti kekuasaan Tuhan melalui keilmuan yang diketahui manusia. Dengan demikian, kita dapat memperkuat keyakinan pada Tuhan.
3. Kita harus semangat dalam melakukan aktivitas positif yang telah direncanakan untuk memperkuat ketahanan fisik dan psikis dalam menghadapi tantangan.
A. Grafik Fungsi Kuadrat

Pertanyaan Penting

Tanyakan kepada siswa tentang pemahaman mereka mengenai grafik fungsi kuadrat \(y = ax^2 + bx + c \). Perbedaannya dengan grafik fungsi linier \(y = ax + b \) dan bagaimana cara menggambar grafik fungsi kuadrat. Serta pengaruh nilai \(a \), \(b \) dan \(c \) terhadap grafik fungsi kuadrat tersebut.

Pertanyaan Penting

Fungsi kuadrat adalah fungsi yang berbentuk \(y = ax^2 + bx + c \), dengan \(a \neq 0 \), \(x \), \(y \epsilon R \). Fungsi kuadrat dapat pula dituliskan sebagai \(f(x) = ax^2 + bx + c \). Bagaimanakah cara menggambar fungsi kuadrat pada bidang kartesius? Apa pengaruh nilai \(a \), \(b \) dan \(c \) terhadap grafik fungsi kuadrat?

Kegiatan 10.1

Menggambar Grafik Fungsi \(y = ax^2 \)

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman mengenai grafik fungsi kuadrat \(y = ax^2 \) dan pengaruh nilai \(a \) terhadap grafik \(y = ax^2 \).

Diharapkan siswa dapat menyimpulkan bahwa:
1. Jika \(a \) positif maka grafiknya akan terbuka ke atas.
2. Sebaliknya jika \(a \) negatif maka grafiknya akan terbuka ke bawah.
3. Jika nilai \(a \) semakin besar maka grafiknya menjadi lebih “kurus”.

Kegiatan 10.1

Menggambar Grafik Fungsi \(y = ax^2 \)

Gambarlah grafik fungsi kuadrat yang paling sederhana, yakni ketika \(b = c = 0 \). Untuk mendapatkan grafiknya siswa dapat membuat gambar untuk beberapa nilai \(x \) dan mensubstitusikannya pada fungsi \(y = ax^2 \), misalkan untuk \(a = 1 \), \(a = -1 \) dan \(a = 2 \).

Minta siswa mengerjakan Kegiatan ini dengan teman sebangkunya.
Untuk mendapatkan grafik suatu fungsi kuadrat, siswa terlebih dahulu harus mendapatkan beberapa titik koordinat yang dilalui oleh fungsi kuadrat tersebut. Siswa dapat mencari titik koordinat tersebut dengan mensubstitusikan untuk beberapa nilai \(x \) yang berbeda.

a. Lengkapi ketiga tabel berikut di bawah.

<table>
<thead>
<tr>
<th>(y = x^2)</th>
<th>((x, y))</th>
<th>(y = -x^2)</th>
<th>((x, y))</th>
<th>(y = 2x^2)</th>
<th>((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>(-3)(^2) = 9</td>
<td>(-3, 9)</td>
<td>-3</td>
<td>(-3)(^2) = 9</td>
<td>(-3, 9)</td>
</tr>
<tr>
<td>-2</td>
<td>(-2)(^2) = 4</td>
<td>(-2, 4)</td>
<td>-2</td>
<td>(-2)(^2) = 4</td>
<td>(-2, 4)</td>
</tr>
<tr>
<td>-1</td>
<td>(-1)(^2) = 1</td>
<td>(-1, 1)</td>
<td>-1</td>
<td>(-1)(^2) = 1</td>
<td>(-1, 1)</td>
</tr>
<tr>
<td>0</td>
<td>0(^2) = 0</td>
<td>(0, 0)</td>
<td>0</td>
<td>-0(^2) = 0</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>1</td>
<td>1(^2) = 1</td>
<td>(1, 1)</td>
<td>1</td>
<td>-1(^2) = -1</td>
<td>(1, -1)</td>
</tr>
<tr>
<td>2</td>
<td>2(^2) = 4</td>
<td>(2, 4)</td>
<td>2</td>
<td>-2(^2) = -4</td>
<td>(2, -4)</td>
</tr>
<tr>
<td>3</td>
<td>3(^2) = 9</td>
<td>(3, 9)</td>
<td>3</td>
<td>-3(^2) = -9</td>
<td>(3, -9)</td>
</tr>
</tbody>
</table>

b. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat, (gunakan tiga warna berbeda).

c. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut (sesuai warna).

Gambarkan ketiga grafik tersebut menggunakan bidang koordinat berikut ini dan amati tiap-tiap grafik.
Keterangan:
- Grafik fungsi \(y = x^2 \) berwarna hitam, \(y = -x^2 \) berwarna biru, \(y = 2x^2 \) berwarna merah.

Ayo Kita Simpulkan

Dari Kegiatan 10.1 di atas, kesimpulan apa yang siswa peroleh?

Nilai \(a \) pada fungsi \(y = ax^2 \) akan mempengaruhi bentuk grafiknya.
1. Jika \(a > 0 \) maka grafiknya akan terbuka ke atas.
2. Jika \(a < 0 \) maka grafiknya akan terbuka ke bawah.
3. Jika \(a > 0 \) dan nilai \(a \) semakin besar maka grafiknya akan semakin “kurus”.
4. Jika \(a < 0 \) dan nilai \(a \) semakin kecil maka grafiknya akan semakin “gemuk”.

Kegiatan 10.2 Menggambar Grafik Fungsi \(y = ax^2 + c \)

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman mengenai grafik fungsi kuadrat \(y = x^2 + c \) dan pengaruh nilai \(c \) terhadap grafik \(y = x^2 + c \).

Diharapkan siswa dapat menyimpulkan bahwa nilai \(c \) pada fungsi \(y = x^2 + c \) akan mempengaruhi pergeseran dari grafik \(y = x^2 \), yakni

1. Jika \(c < 0 \) maka grafik \(y = x^2 + c \) merupakan pergeseran grafik \(y = x^2 \) sepanjang \(c \) satuan ke bawah.
2. Jika \(c > 0 \) maka grafik \(y = x^2 + c \) merupakan pergeseran grafik \(y = x^2 \) sepanjang \(c \) satuan ke atas.

Kegiatan 10.2

Menggambar Grafik Fungsi \(y = ax^2 + c \)

Pada kegiatan ini siswa diminta menggambar grafik fungsi kuadrat ketika \(b = 0 \) dan \(c \neq 0 \). Kegiatan ini dibagi menjadi dua sub-kegiatan. Pada kegiatan ini siswa menggambar grafik fungsi \(y = x^2 + c \) sebanyak tiga kali, yakni untuk \(c = 0, c = 1 \) dan \(c = -1 \).

Ayo Kita Gali Informasi

a. Lengkapi ketiga tabel berikut di bawah.

<table>
<thead>
<tr>
<th>(y = x^2 + 1)</th>
<th>(x, y)</th>
<th>(y = x^2 - 1)</th>
<th>(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3 ((-3)^2 + 1 = 10)</td>
<td>(-3, 10)</td>
<td>-3 ((-3)^2 - 1 = 8)</td>
<td>(-3, 8)</td>
</tr>
<tr>
<td>-2 ((-2)^2 + 1 = 5)</td>
<td>(-2, 5)</td>
<td>-2 ((-2)^2 - 1 = 3)</td>
<td>(-2, 3)</td>
</tr>
<tr>
<td>-1 ((-1)^2 + 1 = 2)</td>
<td>(-1, 2)</td>
<td>-1 ((-1)^2 - 1 = 0)</td>
<td>(-1, 0)</td>
</tr>
<tr>
<td>0 (0^2 + 1 = 1)</td>
<td>(0, 1)</td>
<td>0 (0^2 - 1 = -1)</td>
<td>(0, 1)</td>
</tr>
<tr>
<td>1 (1^2 + 1 = 2)</td>
<td>(1, 2)</td>
<td>1 (1^2 - 1 = 0)</td>
<td>(1, 0)</td>
</tr>
<tr>
<td>2 (2^2 + 1 = 5)</td>
<td>(2, 4)</td>
<td>2 (2^2 - 1 = 3)</td>
<td>(2, 3)</td>
</tr>
<tr>
<td>3 (3^2 + 1 = 10)</td>
<td>(3, 9)</td>
<td>3 (3^2 - 1 = 8)</td>
<td>(3, 8)</td>
</tr>
</tbody>
</table>

b. Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat.

c. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut (sesuai warna).

d. Gambarlah kembali grafik \(y = x^2 \) seperti pada Kegiatan 10.2.
Ayo Kita Amati

Gambarkan ketiga grafik tersebut menggunakan bidang koordinat berikut ini dan amati tiap-tiap grafik.

Keterangan:
- Grafik fungsi \(y = x^2 \) berwarna hitam, \(y = x^2 + 1 \) berwarna biru, \(y = x^2 - 1 \) berwarna merah.

Berdasarkan hasil pengamatanmu, lengkapi kalimat-kalimat berikut.
- Grafik fungsi \(y = x^2 \) memotong sumbu-\(Y \) di titik koordinat (0, 0).
- Grafik fungsi \(y = x^2 + 1 \) memotong sumbu-\(Y \) di titik koordinat (0, 1).
- Grafik fungsi \(y = x^2 - 1 \) memotong sumbu-\(Y \) di titik koordinat (0, -1).
- Grafik fungsi \(y = x^2 + 1 \) merupakan geseran grafik \(y = x^2 \) sepanjang 1 satuan ke kanan.
- Grafik fungsi \(y = x^2 - 1 \) merupakan geseran grafik \(y = x^2 \) sepanjang 1 satuan ke kanan.

Ayo Kita Simpulkan

a. Nilai \(c \) pada fungsi \(y = x^2 + c \) akan mempengaruhi geseran grafik \(y = x^2 \), yaitu bergeser \(c \) satuan ke atas jika \(c > 0 \) dan bergeser \(c \) satuan ke bawah jika \(c < 0 \).

b. Grafik fungsi \(y = x^2 + c \) memotong sumbu-\(Y \) di titik koordinat \((0, c) \).
Kegiatan 10.3
Menggambar Grafik Fungsi $y = x^2 + bx$

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman mengenai grafik fungsi kuadrat $y = x^2 + bx$ dan pengaruh nilai c terhadap grafik $y = x^2 + bx$. Serta mengenai titik puncak.

Diharapkan siswa dapat menyimpulkan bahwa titik puncak adalah titik koordinat (x, y) dengan nilai y paling maksimum/minimum tergantung nilai b.

1. Jika $b < 0$ maka nilai grafik $y = x^2 + bx$ memiliki titik puncak maksimum.
2. Jika $b > 0$ maka nilai grafik $y = x^2 + bx$ memiliki titik puncak minimum.
3. Titik puncak terjadi pada koordinat (x_p, y_p) dengan $x_p = \frac{-b}{2}$ dan $y_p = f(x_p)$.

Kegiatan 10.3
Menggambar Grafik Fungsi $y = x^2 + bx$

Pada kegiatan ini siswa diminta menggambar grafik fungsi kuadrat ketika $c = 0$ dan $b \neq 0$. Kegiatan ini dibagi menjadi tiga sub-kegiatan, yakni ketika $b = 1$, $b = -1$ dan $b = 2$. Pada kegiatan ini siswa akan mengenal titik puncak dari suatu grafik fungsi kuadrat.

Minta siswa mengerjakan kegiatan ini bersama teman sebangkunya.

Ayo Kita Gali Informasi

Lengkapi ketiga tabel berikut di bawah.

	$y = x^2 + 2x$	(x, y)		$y = x^2 - 2x$	(x, y)	
-----------	---------------	----------		----------	-----------	
-3	$(-3)^2 + 2(-3) = 3$	(-3, 3)		-3	$(-3)^2 - 2(-3) = 15$	(-3, 15)
-2	$(-2)^2 + 2(-2) = 0$	(-2, 0)		-2	$(-2)^2 - 2(-2) = 8$	(-2, 8)
-1	$(-1)^2 + 2(-1) = -1$	(-1, -1)		-1	$(-1)^2 - 2(-1) = 3$	(-1, 3)
0	$(0)^2 + 2(0) = 0$	(0, 0)		0	$(0)^2 - 2(0) = 0$	(0, 0)
1	$(1)^2 + 2(1) = 3$	(1, 3)		1	$(1)^2 - 2(1) = -1$	(1, -1)
2	$(2)^2 + 2(2) = 8$	(2, 8)		2	$(2)^2 - 2(2) = 0$	(2, 0)
3	$(3)^2 + 2(3) = 15$	(3, 15)		3	$(3)^2 - 2(3) = 3$	(3, 3)
b. Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat (gunakan tiga warna berbeda untuk tabel).

c. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut (sesuai warna).

d. Pada tiap-tiap tabel tentukan nilai y yang paling kecil. Apakah ada hubungannya dengan nilai b?

Ayo Kita Amati

Gambarkan ketiga grafik tersebut menggunakan bidang koordinat di bawah ini dan amati tiap-tiap grafik. Pada tiap-tiap grafik tentukan koordinat titik yang paling bawah (titik koordinat ini selanjutnya disebut titik puncak).
Keterangan:
- Grafik fungsi $y = x^2 + 2x$ berwarna hitam, $y = x^2 - 2$ berwarna biru, $y = -x^2 + 2x$ berwarna merah.

e. Ulangi kegiatan ini dengan fungsi kuadrat $y = -x^2 + x$, $y = -x^2 - x$, $y = -x^2 + 3x$. Selanjutnya tentukan titik yang paling atas (titik koordinat ini juga disebut dengan titik puncak).
f. Pada tiap grafik tentukan suatu garis vertikal yang merupakan sumbu simetri.

Ayo Kita Simpulkan

1. Titik puncak adalah titik koordinat yang merupakan titik paling atas atau paling bawah.
2. Sumbu simetri adalah garis vertikal yang melalui titik puncak.
3. Pengaruh nilai b pada grafik fungsi $y = x^2 + bx$ adalah titik puncaknya berada di koordinat (x_p, y_p) dengan $x_p = \frac{-b}{2a}$ dan $y_p = f(x_p)$.

Ayo Kita Menanya

Buatlah pertanyaan mengenai semua kegiatan yang telah siswa kerjakan di atas.

Materi Esensi Grafik Fungsi Kuadrat

Setelah melakukan semua kegiatan, guru menjelaskan materi mengenai grafik fungsi kuadrat $y = ax^2 + bx + c$. Guru juga menjelaskan pengaruh nilai a, b, dan c terhadap grafik fungsi kuadrat.

Materi Esensi Grafik Fungsi Kuadrat

Fungsi kuadrat merupakan fungsi yang berbentuk $y = ax^2 + bx + c$, dengan $a \neq 0$. Grafik dari fungsi kuadrat menyerupai parabola, sehingga dapat dikatakan juga sebagai fungsi parabola.
Gambar Perbandingan grafik fungsi kuadrat \(y = x^2 \), \(y = -x^2 \) dan \(y = 2x^2 \)

Nilai \(a \) pada fungsi \(y = ax^2 + bx + c \) akan mempengaruhi bentuk grafiknya. Jika \(a \) positif maka grafiknya akan terbuka keatas. Sebaliknya jika \(a \) negatif maka grafiknya akan terbuka kebawah. Jika nilai \(a \) semakin besar maka grafiknya menjadi lebih “kurus”.

Gambar Perbandingan grafik fungsi kuadrat \(y = x^2 + 2x \), \(y = -x^2 - 3x + 2 \) dan \(y = -x^2 - 5x - 4 \)
Garis putus-putus pada gambar di atas menerupakan sumbu simetri. Koordinat yang ditandai dengan bulatan merupakan titik puncak sedangkan koordinat yang ditandai dengan persegi merupakan titik potong dengan sumbu-Y.

Nilai b pada grafik $y = ax^2 + bx + c$ menunjukkan dimana koordinat titik puncak dan sumbu simetri berada (titik puncak dan sumbu simetri dibahas lebih lanjut pada sub-bab selanjutnya). Jika $a > 0$ maka grafik $y = ax^2 + bx + c$ memiliki titik puncak minimum. Jika $a < 0$ maka grafik $y = ax^2 + bx + c$ memiliki titik puncak maksimum.

Nilai c pada grafik $y = ax^2 + bx + c$ menunjukkan titik perpotongan grafik fungsi kuadrat tersebut dengan sumbu-Y, yakni pada koordinat $(0, c)$.

Contoh 10.1 Grafik Fungsi Kuadrat

Berikut ini adalah grafik lima fungsi kuadrat yang berbeda.

1. Grafik yang berwarna hitam merupakan grafik fungsi kuadrat $y = x^2 - x + 2$. Grafik $y = x^2 - x + 2$ memotong sumbu-Y pada koordinat $(0, 2)$ dan memiliki titik puncak minimum.

2. Grafik yang berwarna merah merupakan grafik fungsi kuadrat $y = 2x^2 - 6x + 4$. Grafik $y = 2x^2 - 6x + 4$ memotong sumbu-Y pada koordinat $(0, 4)$ dan memiliki titik puncak minimum.
3. Grafik yang berwarna biru merupakan grafik fungsi kuadrat \(y = -2x^2 + 8 \). Grafik \(y = -2x^2 + 8 \) memotong sumbu-Y pada koordinat \((0, 8)\) dan memiliki titik puncak maksimum.

4. Grafik yang berwarna merah dengan garis putus-putus merupakan grafik fungsi kuadrat \(y = x^2 - 7x + 10 \). Grafik \(y = x^2 - 7x + 10 \) memotong sumbu-Y pada koordinat \((0, 10)\) dan memiliki titik puncak minimum.

5. Grafik yang berwarna biru dengan garis putus-putus merupakan grafik fungsi kuadrat \(y = -x^2 - 5x - 6 \). Grafik \(y = -x^2 - 5x - 6 \) memotong sumbu-Y pada koordinat \((0, -6)\) dan memiliki titik puncak maksimum.

Ayo Kita Tinjau Ulang

1. Mengapa fungsi kuadrat \(y = ax^2 + bx + c \) disyaratkan \(a \neq 0 \), tentukan alasanmu.

2. Terdapat dua fungsi kuadrat, \(f(x) = ax^2 + bx + c \) dan \(g(x) = -f(x) = -ax^2 - bx - c \). Apa yang dapat disimpulkan dari grafik \(f(x) \) dan \(g(x) \).

Penyelesaian:

1. Karena jika \(a = 0 \), maka fungsinya menjadi \(y = bx + c \) yang merupakan fungsi linier.

2. Grafik \(g(x) \) merupakan hasil pencerminan grafik \(f(x) \) terhadap sumbu-\(X \).

Latihan 10.1

Grafik Fungsi Kuadrat

1. Gambarkan grafik fungsi kuadrat berikut.
 a. \(y = \frac{1}{2} x^2 \)
 b. \(y = \frac{1}{4} x^2 \)
 c. \(y = -\frac{1}{2} x^2 \)
 d. \(y = -\frac{1}{2} x^2 \)

2. Dari Soal 1, apa yang dapat siswa simpulkan mengenai grafik \(y = ax^2 \) dengan \(|a| < 1 \) dan \(a \neq 0 \)?

 Penyelesaian: Jika dibandingkan dengan grafik \(y = x^2 \) maka grafik \(y = ax^2 \) akan lebih “gemuk”.

3. Gambarkan grafik fungsi kuadrat berikut.
 a. \(y = x^2 + 3x + 2 \)
 b. \(y = x^2 - 3x + 2 \)
 c. \(y = x^2 + 5x + 6 \)
 d. \(y = x^2 - 5x + 6 \)
4. Dari Soal 3, apa yang dapat siswa simpulkan mengenai perbandingan grafik
\(y = ax^2 + bx + c \) dengan \(y = ax^2 - bx + c \)?

Penyelesaian: Grafik \(y = ax^2 - bx + c \) merupakan pencerminan terhadap sumbu-\(X \) grafik \(y = ax^2 - bx + c \)

5. Gambarkan grafik fungsi kuadrat berikut.
 a. \(y = x^2 + 4x + 2 \)
 b. \(y = -x^2 + 2x + 3 \)
 c. \(y = x^2 - 5x + 5 \)
 d. \(y = -2x^2 + 4x + 5 \)

6. Dari soal nomor 5, tentukan titik puncak tiap-tiap grafik. Tentukan pula hubungan titik puncak grafik fungsi \(y = ax^2 + bx + c \) dengan nilai \(-\frac{b}{2a}\).

Penyelesaian: Titik puncak terjadi pada saat \(x = -\frac{b}{2a} \)

7. Apakah mungkin grafik fungsi kuadrat tidak memotong sumbu-\(X \)? Jelaskan alasanmu.

Penyelesaian: Mungkin, dari suatu grafik fungsi kuadrat yang memotong sumbu-\(X \) kita dapat menggesernya keatas atau kebawah untuk mendapatkan grafik fungsi keuadrat yang tidak memotong sumbu-\(X \). Contoh: \(y = x^2 \) memotong sumbu-\(X \) tapi \(y = x^2 + 4 \) tidak memotong sumbu-\(X \).

Penyelesaian: Tidak. Karena grafik fungsi kuadrat \(f(x) \) pasti memotong sumbu-\(Y \) pada saat \(x = 0 \). Diperoleh \(f(0) = c \), sehingga memotong sumbu-\(Y \) pada titik koordinat \((0, c) \).

Penyelesaian: Tidak. Karena \(f(x) = ax^2 + bx + c \) memiliki akar-akar maksimal sebanyak 2, sehingga grafiknya memotong sumbu-\(X \) maksimal sebanyak 2 kali.

Penyelesaian: Tidak. Cukup jelas dari jawaban soal no 8 bahwa nilai \(f(0) \) adalah tunggal.
B. Sumbu Simetri dan Nilai Optimum

Pertanyaan Penting

Berikan penjelasan pada siswa mengenai seberapa pentingnya menentukan nilai optimum. Misalkan jika menentukan tinggi optimum dari suatu benda yang dilempar.

Pertanyaan Penting

a. Bagaimana menentukan sumbu simetri grafik fungsi kuadrat?
b. Bagaimana menentukan nilai optimum fungsi kuadrat tersebut?

Kegiatan 10.4

Pergeseran Grafik Fungsi Kuadrat

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan kertas berpetak.

Setelah kegiatan ini guru harus membuat kesimpulan mengenai pergeseran grafik pada fungsi kuadrat.

1. Gambarlah grafik fungsi kuadrat di bawah ini pada bidang koordinat
 a. \(f(x) = x^2 \)
 b. \(f(x) = (x - 1)^2 \)
 c. \(f(x) = (x - 2)^2 \)
 d. \(f(x) = (x + 1)^2 \)
 e. \(f(x) = (x + 2)^2 \)

2. Gambarlah grafik fungsi kuadrat di bawah ini pada bidang koordinat
 a. \(f(x) = x^2 \)
b. \(f(x) = x^2 + 1 \)

c. \(f(x) = x^2 + 2 \)

d. \(f(x) = x^2 - 1 \)

e. \(f(x) = x^2 - 2 \)

Ayo Kita Amati

Berdasarkan kegiatan di atas, bandingkan grafik lima fungsi pada bagian (1)

- Grafik \(f(x) = (x - 1)^2 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh 1 satuan ke kanan.

- Grafik \(f(x) = (x - 2)^2 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh 2 satuan ke kanan.

- Grafik \(f(x) = (x + 1)^2 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh 1 satuan ke kiri.

- Grafik \(f(x) = (x + 2)^2 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh 2 satuan ke kiri.

Bandingkan grafik dari lima fungsi pada bagian (2)

- Grafik \(f(x) = x^2 + 1 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh 1 satuan ke atas.

- Grafik \(f(x) = x^2 + 2 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh 2 satuan ke atas.

- Grafik \(f(x) = x^2 - 1 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh 1 satuan ke bawah.

- Grafik \(f(x) = x^2 - 2 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh 2 satuan ke bawah.
Berdasarkan kegiatan di atas, maka

1. Untuk \(s \) positif maka grafik \(f(x) = (x - s)^2 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh \(s \) satuan ke kanan.

2. Untuk \(s \) positif maka grafik \(f(x) = (x + s)^2 \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh \(s \) satuan ke kiri.

3. Untuk \(t \) positif maka grafik \(f(x) = x^2 + t \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh \(t \) satuan ke atas.

4. Untuk \(t \) positif maka grafik \(f(x) = x^2 - t \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh \(t \) satuan ke bawah.

5. Untuk \(s \) dan \(t \) positif maka grafik \(f(x) = (x - s)^2 + t \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh \(s \) satuan ke kanan dan dilanjutkan dengan pergeseran sejauh \(t \) satuan ke atas.

6. Untuk \(s \) dan \(t \) positif maka grafik \(f(x) = (x - s)^2 - t \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh \(s \) satuan ke kanan dan dilanjutkan dengan pergeseran sejauh \(t \) satuan ke kiri.

7. Untuk \(s \) dan \(t \) positif maka grafik \(f(x) = (x + s)^2 + t \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh \(s \) satuan ke kiri dan dilanjutkan dengan pergeseran sejauh \(t \) satuan ke kanan.

8. Untuk \(s \) dan \(t \) positif maka grafik \(f(x) = (x + s)^2 - t \) adalah pergeseran grafik fungsi \(f(x) = x^2 \) sejauh \(s \) satuan ke kiri dan dilanjutkan dengan pergeseran sejauh \(t \) satuan ke kiri.

Kegiatan 10.5 Menentukan Sumbu Simetri dan Nilai Optimum

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan kertas berpetak. Setelah kegiatan ini siswa diharapkan mendapatkan formula

1. Sumbu simetri
2. Nilai optimum

untuk itu siswa harus melakukan *Ayo Kita Amati, Ayo Kita Simpulkan, Ayo Kita Menalar*.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai dua hal tersebut yaitu sumbu simetri dan nilai optimum dari fungsi kuadrat.
Menentukan Sumbu Simetri dan Nilai Optimum

Buatlah sumbu simetri untuk setiap grafik yang telah dibuat pada Kegiatan 1.

Ayo Kita Amati

Isilah tabel di bawah ini

<table>
<thead>
<tr>
<th>Fungsi</th>
<th>(f(x) = x^2)</th>
<th>(f(x) = (x - 1)^2)</th>
<th>(f(x) = (x - 2)^2)</th>
<th>(f(x) = (x + 1)^2)</th>
<th>(f(x) = (x + 2)^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumbu simetri</td>
<td>(x = 0)</td>
<td>(x = 1)</td>
<td>(x = 2)</td>
<td>(x = -1)</td>
<td>(x = -2)</td>
</tr>
<tr>
<td>Nilai optimum</td>
<td>(f(0) = 0)</td>
<td>(f(1) = 0)</td>
<td>(f(2) = 0)</td>
<td>(f(-1) = 0)</td>
<td>(f(-2) = 0)</td>
</tr>
</tbody>
</table>

Isilah tabel di bawah ini

<table>
<thead>
<tr>
<th>Fungsi</th>
<th>(f(x) = x^2)</th>
<th>(f(x) = x^2 + 1)</th>
<th>(f(x) = x^2 + 2)</th>
<th>(f(x) = x^2 - 1)</th>
<th>(f(x) = x^2 - 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumbu simetri</td>
<td>(x = 0)</td>
</tr>
<tr>
<td>Nilai optimum</td>
<td>(f(0) = 0)</td>
<td>(f(0) = 1)</td>
<td>(f(0) = 2)</td>
<td>(f(0) = -1)</td>
<td>(f(0) = -2)</td>
</tr>
</tbody>
</table>

Ayo Kita Simpulkan

Berdasarkan pengamatan di atas, jawablah pertanyaan berikut ini

1. Tentukan sumbu simetri dan nilai optimum grafik fungsi \(f(x) = (x - s)^2 \)? \((s; 0) \)
2. Tentukan sumbu simetri dan nilai optimum grafik fungsi \(f(x) = x^2 + t^2 \)? \((0; t) \)
3. Tentukan sumbu simetri dan nilai optimum grafik fungsi \(f(x) = (x - s)^2 + t^2 \)? \((s; t) \)
Sumbu simetri grafik fungsi $f(x) = ax^2$ adalah 0

Jadi

Sumbu simetri grafik fungsi $f(x) = a (x - s)^2$ adalah s dan nilai optimumnya adalah 0.

Sumbu simetri grafik fungsi $f(x) = a (x - s)^2 + t$ adalah s dan nilai optimumnya adalah t.

Kemudian untuk

$$f(x) = ax^2 + bx + c = a (x^2 + \frac{b}{a} x) + c \geq a (x^2 + \frac{b}{a} x + \frac{b^2}{4a^2}) - a \left(\frac{b^2}{4a^2} \right) + c$$

$$= a(x + \frac{b}{2a})^2 - a \left(\frac{b^2}{4a^2} \right) + c = a(x - \frac{b}{2a})^2 - a \left(\frac{b^2}{4a^2} \right) + c$$

didapatkan sumbu simetrinya adalah

$$x = \frac{b}{2a}$$

dengan nilai optimumnya adalah

$$f\left(\frac{b}{2a} \right) = \frac{b^2}{4a} + c = \frac{b^2 - 4ac}{4a}$$

sehingga titik optimumnya adalah

$$\left(-\frac{b}{2a}, \frac{b^2 - 4ac}{4a} \right)$$

Apa rumus untuk mendapatkan sumbu simetri dan nilai optimum dari grafik fungsi $f(x) = ax^2 + bx + c$?

sumbu simetrinya adalah

$$x = \frac{b}{2a}$$

dengan nilai optimumnya adalah

$$f\left(\frac{b}{2a} \right) = \frac{b^2}{4a} + c = \frac{b^2 - 4ac}{4a}$$

sehingga titik optimumnya adalah

$$\left(-\frac{b}{2a}, \frac{b^2 - 4ac}{4a} \right)$$

514 Buku Guru Kelas IX SMP/MTs
Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan kertas berpetak.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai cara menggambar grafik fungsi kuadrat.

Kemudian setelah kegiatan ini lakukan diskusi dan berbagi mengenai subbab ini. Lihat bagian Diskusi dan Berbagi dan berikan stimulus kepada siswa untuk bertanaya (bagian Silakan Bertanya).

Sketsa grafik $f(x) = 3x^2 - 10x + 9$ dan $f(x) = -2x^2 + 12x - 20$.

1. Periksaltah, apakah bentuk parabola grafik fungsi di atas terbuka ke atas atau ke bawah!
2. Tentukan perpotongan grafik terhadap sumbu-X; yaitu, koordinat titik potongnya adalah $(x_1, 0)$ yang memenuhi persamaan $f(x_1) = 0$
 (Perhatikan apakah persamaan tersebut mempunyai penyelesaian atau tidak, jika tidak apa yang bisa siswa simpulkan)
3. Tentukan perpotongan grafik terhadap sumbu-Y; yaitu, koordinat titik potongnya adalah $(0, y_1)$ dengan y_1 didapatkan berdasarkan persamaan $y_1 = f(0)$
4. Tentukan sumbu simetri dan nilai optimum grafik fungsi di atas.
5. Dari informasi yang didapatkan, sketsalah grafik fungsi kuadrat di atas.

Diskusikan dengan temanmu bagaimana bentuk grafik $f(x) = \sqrt{x}$ dan $f(x) = -\sqrt{x}$. Bandingkan grafiknya dengan grafik persamaan kuadrat. Apa yang bisa siswa dapatkan
dari analisis ini? **Petunjuk:** Buatlah Grafik \(f(x) = x^2 \) kemudian gantilah sumbu-\(X \) dengan sumbu-\(Y \) dan juga sumbu-\(Y \) dengan sumbu-\(X \). Didapatkan grafik dari \(f(x) = \sqrt{x} \).

Ayo Kita Menanya

Buatlah pertanyaan mengenai kegiatan yang telah siswa kerjakan di atas.

Materi Esensi

Menentukan Sumbu Simetri dan Titik Optimum

Pada bagian ini dibahas tentang menentukan nilai sumbu simetri dan nilai optimum dari fungsi kuadrat. Guru diharapkan menjelaskannya berdasarkan pada kegiatan-kegiatan yang telah dilakukan.

<table>
<thead>
<tr>
<th>Materi Esensi</th>
<th>Menentukan Sumbu Simetri dan Titik Optimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungsi kuadrat (f(x) = ax^2 + bx + c) mempunyai sumbu simetri</td>
<td></td>
</tr>
<tr>
<td>(x = \frac{-b}{2a})</td>
<td></td>
</tr>
<tr>
<td>Dengan nilai optimumnya adalah</td>
<td></td>
</tr>
<tr>
<td>(y_0 = \frac{-D}{4a})</td>
<td></td>
</tr>
</tbody>
</table>

Langkah-langkah mensketsa grafik fungsi kuadrat:

- **Langkah 1.** Menentukan bentuk parabola (terbuka ke atas atau ke bawah)!
- **Langkah 2.** Menentukan perpotongan grafik terhadap sumbu-\(X \); yaitu, koordinat titik potongnya adalah \((x_1, 0) \) yang memenuhi persamaan \(f(x_1) = 0 \)
- **Langkah 3.** Menentukan perpotongan grafik terhadap sumbu-\(Y \); yaitu, koordinat titik potongnya adalah \((0, y_1) \) dengan \(y_1 \) didapatkan berdasarkan persamaan \(y_1 = f(0) \)
- **Langkah 4.** Menentukan sumbu simetri dan nilai optimum dari grafik fungsi.
- **Langkah 5.** Mensketsa grafik fungsi kuadrat berdasarkan langkah (1), (2), (3) dan (4).
Contoh 10.2
Menentukan Sumbu Simetri dan Nilai Optimum

Dengan membaca contoh ini diharapkan siswa dapat menerapkan algoritma pada materi pembelajaran untuk menentuak nilai sumbu simetri dan titik optimum dari fungsi kuadrat.

Contoh 10.2
Menentukan Sumbu Simetri dan Nilai Optimum

Tentukan sumbu simetri dan nilai optimum dari grafik fungsi \(f(x) = x^2 - 4x + \frac{1}{2} \)

Alternatif Penyelesaian:

Diketahui: fungsi kuadrat \(f(x) = x^2 - 4x + \frac{1}{2} \), didapatkan \(a = 1, \ b = -4 \) dan \(c = \frac{1}{2} \).

Ditanya: sumbu simetri dan titik optimum

Penyelesaian:
Persamaan sumbu simetrinya adalah

\[
x = -\frac{b}{2a} = -\frac{-4}{2(1)} = 2
\]

Nilai optimum fungsi tersebut adalah

\[
y_o = \frac{-D}{4a} = \frac{b^2 - 4ac}{4a} = -\frac{(-4)^2 - 4(1)(\frac{1}{2})}{4(1)} = -\frac{7}{2}
\]

Sehingga titik optimumnya adalah

\((x, y_o) = (2, -\frac{7}{2})\)

Contoh 10.3
Menentukan Nilai Maksimum dan Minimum

Dengan membaca contoh ini diharapkan siswa dapat menerapkan algoritma pada materi pembelajaran untuk menentuak nilai maksimum dan minimum fungsi kuadrat.

Contoh 10.3
Menentukan Nilai Maksimum dan Minimum

Tentukan apakah fungsi \(f(x) = -2x^2 - 12x - 17 \) mempunyai nilai maksimum atau minimum. Tentukan nilaianya!
Alternatif Penyelesaian:

Diketahui : fungsi kuadrat \(f(x) = -2x^2 - 12x - 17 \)
didapatkan \(a = -2, b = -12 \) dan \(c = -17 \).

Ditanya : Tentukan apakah ada nilai maksimum atau minimum. Tentukan nilai maksimum atau minimumnya!

Penyelesaian :

Karena nilai \(a = -2 < 0 \) maka parabola terbuka kebawah sehingga yang ada hanya nilai maksimum. Nilai maksimumnya adalah

\[
y_m = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{(-12)^2 - 4(2)(-17)}{4(-2)} = -\frac{144 - 136}{-8} = 1
\]

Contoh 10.4

Sketsa Grafik

Dengan membaca contoh ini diharapkan siswa dapat menerapkan algoritma pada meteri pembelajaran untuk mensketsa grafik fungsi kuadrat.

Sketsalah grafik \(f(x) = x^2 - 6x + 10 \)

Alternatif Penyelesaian:

Diketahui: fungsi kuadrat \(f(x) = x^2 - 6x + 10 \) didapat \(a = 1, b = -6 \) dan \(c = 10 \).

Ditanya: Sketsa grafik

Penyelesaian:

Langkah 1. Karena \(a = 1 > 0 \) maka parabola terbuka keatas

Langkah 2. Perpotongan grafik terhadap sumbu-\(X \)

Dihitung bahwa \(D = b^2 - 4ac = 6^2 - 4(1)(10) = -4 < 0 \). Sehingga grafik tidak memotong sumbu-\(X \).

Langkah 3. Perpotongan grafik terhadap sumbu-\(Y \)

\(y_0 = f(0) = 10 \) yaitu pada titik \((0, 10)\).

Langkah 4. Sumbu simetri dan nilai optimum dari fungsi

Sumbu simetrinya adalah \(x = -\frac{b}{2a} = 3 \) dan nilai optimumnya didapat

\[
y_0 = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{(-6)^2 - 4(1)(10)}{4(1)} = -\frac{36 - 40}{4} = -1
\]
Ayo Kita Tinjau Ulang

1. Tentukan fungsi kuadrat $f(x) = x^2 - 4x + c$ sedemikian hingga nilai optimumnya adalah 20. **Penyelesaian:** 24.

2. Tentukan nilai a dan buntuk fungsi kuadrat $f(x) = ax^2 + bx + 1$ sedemikian hingga
 a. Fungsi $f(x)$ mempunyai nilai maksimum 10 dan sumbu simetri $x = 3$. **Penyelesaian:** $a = -1$.
 b. Fungsi $f(x)$ mempunyai nilai minimum dengan nilai minimum -10 dan sumbu simetri $x = 3$. **Penyelesaian:** $a = \frac{11}{9}$.

3. Sketsalah grafik $f(x) = -3x^2 - 10x + 9$

Latihan 10.2 Menentukan Sumbu Simetri dan Titik Optimum

Pada bagian ini siswa diharapkan lebih mengerti mengenai contoh-contoh yang telah diberikan di atas dengan cara melakukan latihan-latihan ini. Pada soal nomor 1 dan 2 siswa diharapkan lebih mengerti mengenai nilai optimum dari suatu grafik fungsi kuadrat. Pada soal nomor 2 siswa dilatih untuk menggambarkan grafik.
Latihan 10.2 Menentukan Sumbu Simetri dan Titik Optimum

1. Tentukan sumbu simetri grafik fungsi di bawah ini
 a. $y = 2x^2 - 5x$
 b. $y = 3x^2 + 12x$
 c. $y = -8x^2 - 16x - 1$

 Penyelesaian:

 a. Sumbu simetrinya adalah $x = \frac{-b}{2a} = \frac{-5}{2 \times 4} = \frac{-5}{8}$
 b. Sumbu simetrinya adalah $x = \frac{-b}{2a} = \frac{-12}{2 \times 3} = -2$
 c. Sumbu simetrinya adalah $x = \frac{-b}{2a} = \frac{-16}{2 \times (-8)} = 1$

2. Tentukan nilai optimum fungsi berikut ini
 a. $y = -6x^2 + 24x - 19$
 b. $y = \frac{2}{5}x^2 - 3x + 15$

 Penyelesaian:

 a. $y_m = \frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = \frac{(24)^2 - 4(-6)(-19)}{4(-6)} = \frac{576 - 456}{-24} = 5$
 b. $y_m = \frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = \frac{(-3)^2 - 4\left(\frac{2}{5}\right)(15)}{4\left(\frac{2}{5}\right)} = \frac{9 - 24}{\frac{8}{25}} = \frac{375}{8}$
 c. $y_m = \frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = \frac{(7)^2 - 4\left(\frac{3}{4}\right)(-18)}{4\left(\frac{3}{4}\right)} = \frac{49 - 54}{3} = \frac{5}{3}$

3. Sketsalah grafik fungsi berikut ini
 a. $y = 2x^2 + 9x$
 b. $y = 8x^2 - 16x + 6$

 Penyelesaian:

 Bentuk suatu persamaan dari barisan di atas yaitu $U_i = ai^2 + bi + c$ didapat persamaan
\[a + b + c = 1 \]
\[4a + 2a + c = 7 \]
\[9a + 3b + c = 16 \]

Sehingga didapat \(U_i = \frac{1}{2} i^2 + \frac{1}{2} i^2 \) dengan demikian suku ke-100 adalah \(U_{100} = 15.148 \)

5. Diketahui suatu barisan 0, -9, -12, …. Suku ke-\(n \) dari barisan tersebut dapat dihitung dengan rumus \(U_n = an^2 + bn + c \). Tentukan nilai minimum dari barisan tersebut.

Penyelesaian:

Bentuk suatu persamaan dari barisan di atas yaitu \(U_i = ai^2 + bi + c \) didapat persamaan

\[a + b + c = 0 \]
\[4a + 2a + c = -9 \]
\[9a + 3b + c = -12 \]

Sehingga didapat \(U_i = 3i^2 - 18i + 15 \) dengan demikian nilai minimumnya adalah

\[y_m = \frac{D}{4a} = \frac{b^2 - 4ac}{4a} = \frac{(-18)^2 - 4(3)(15)}{4(3)} = -\frac{324 - 180}{12} = -\frac{144}{12} = -12 \]

6. Fungsi kuadrat \(y = f(x) \) melalui titik (3, -12) dan (7, 36). Jika sumbu simetrinya \(x = 3 \), tentukan nilai minimum fungsi \(f(x) \).

Penyelesaian:

Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \) maka didapat persamaan

\[9a + 3b + c = 5 \]
\[49a + 7a + c = 10 \]

\[\frac{-b}{2a} = 2 \] atau \(-b = 4a\) atau \(4a + b = 0\)

Sehingga didapat \(f(x) = 3x^2 - 18x + 15 \) dengan demikian nilai minimumnya adalah

\[y_m = \frac{D}{4a} = \frac{b^2 - 4ac}{4a} = \frac{(-18)^2 - 4(3)(15)}{4(3)} = -\frac{324 - 180}{12} = -\frac{144}{12} = -12 \]

7. Bila fungsi \(y = 2x^2 + 6x - m \) mempunyai nilai minimum 3 maka tentukan \(m \).

Penyelesaian:

Sumbu simetrinya adalah \(x = \frac{-b}{2a} = \frac{6}{22} = \frac{6}{4} \) didapat
2 \left(\frac{-6}{4}\right)^2 + 6 \left(\frac{-6}{4}\right) - m = 3

Atau

m = 2 \left(\frac{36}{16}\right) - 9 - 3 = \frac{9}{2}

8. Dari tahun 1995 sampai 2002, banyaknya pelanggan telepon genggam \(N \) (dalam juta orang) dapat dinyatakan oleh persamaan \(N = 17.4x^2 + 36.1x + 83.3 \), dengan \(x = 0 \) merepresentasikan tahun 1995 [Sumber: Data dari 2005 Statistical Abstract of the United States, Tabel 1.372, hal. 870]. Pada tahun berapa banyaknya pelanggan mencapai nilai maksimum?

Penyelesaian:
Banyaknya pelanggan mencapai minimum pada saat tahun

\[x = 1995 - \frac{b}{2a} = 1995 - \frac{36.1}{2 \times 17.4} < 199 \]

Maka pelanggan mencapai maksimum pada saat tahun 2002 yaitu nilai maksimum dari rentang data.

Penyelesaian:
Misalkan dua bilangan tersebut adalah \(a, b \) maka \(a = 30 - b \) sehingga

\[f(b) = a \times b = (30 - b) \times b = 30b - b^2 \]

Karena diminta nilai maksimum maka

\[b = \frac{-30}{2(-1)} = 15 \]

Sehingga didapatkan

\[a = 30 - b = 15 \]

10. Selisih dua bilangan adalah 10. Jika hasil kali kedua bilangan menghasilkan nilai yang minimum, tentukan kedua bilangan tersebut.

Penyelesaian:
Misalkan dua bilangan tersebut adalah \(a, b \) dengan \(a > b \) maka \(a = 10 + b \) sehingga

\[f(b) = a \times b = (30 - b) \times b = 30b - b^2 \]

Karena diminta nilai minimum maka

\[b = \frac{-10}{2(-1)} = -5 \]

Sehingga didapatkan

\[a = 10 - 5 = 5 \]
C. Menentukan Fungsi Kuadrat

Siswa sudah mengetahui bagaimana cara menggambar grafik suatu fungsi kuadrat. Siswa juga sudah mengetahui bagaimana mendapatkan titik puncak, titik potong dan sumbu simetri. Pada sub-bab ini siswa akan mengetahui cara untuk menentukan fungsi kuadrat dari informasi yang ada.

Pertanyaan Penting

Tanyakan kepada siswa:

a. Bagaimana cara menentukan fungsi kuadrat jika sudah diketahui grafiknya.

b. Bagaimana cara menentukan fungsi kuadrat jika diketahui titik puncak, titik potong atau sumbu simetri.

Kegiatan 10.7 Menentukan Fungsi Kuadrat Berdasarkan Grafiknya

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman kepada siswa bagaimana cara mendapatkan fungsi kuadrat jika sudah diketahui grafiknya. Pada tahap ini siswa diajak untuk menganalisa dari informasi titik potong sumbu-\(Y\).

Pada bagian **Ayo Kita Gali Informasi** ajak siswa untuk mencari informasi titik potong dengan sumbu-\(Y\). Pada bagian **Diskusi** minta siswa berdiskusi dengan teman sebangkunya:

1. Apakah mungkin mendapatkan fungsi kuadrat hanya berdasarkan informasi titik potong sumbu-\(Y\)?

2. Minimal berapa koordinat yang harus diketahui agar bisa menentukan fungsi kuadrat berdasarkan grafik?

Pada akhir kegiatan, guru menjelaskan jawaban dari dua pertanyaan di atas:

1. Tidak mungkin mendapatkan fungsi kuadrat hanya berdasarkan informasi titik potong sumbu-\(Y\).
2. Minimal diketahui tiga koordinat agar bisa menentukan fungsi kuadrat berdasarkan grafik. Hal ini dikarenakan terdapat tiga variabel pada fungsi kuadrat $f(x) = ax^2 + bx + c$, yakni a, b dan c.

Kegiatan 10.7
Menentukan Fungsi Kuadrat Berdasarkan Grafiknya

Ayo Kita Gali Informasi

Gambar di samping merupakan grafik suatu fungsi kuadrat. Dapatkan siswa menentukan suatu fungsi yang grafiknya seperti gambar di samping?

- a. Informasi apakah yang siswa peroleh dari grafik di samping?
- b. Apakah grafik di samping memotong sumbu-X?

Diskusi

Diskusikan dengan temanmu tiga pertanyaan di atas. Kemudian diskusikan pertanyaan berikut.

- a. Dari jawaban tiga pertanyaan di atas apakah siswa bisa menentukan fungsi kuadrat sesuai grafik di atas?
- b. Minimal berapa koordinat yang harus diketahui agar siswa bisa menentukan tepat satu fungsi kuadrat berdasarkan grafik?

Kegiatan 10.8
Menentukan Fungsi Kuadrat Berdasarkan Titik Potong Sumbu-X

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman kepada siswa bagaimana cara mendapatkan fungsi kuadrat jika sudah diketahui grafiknya. Pada tahap ini siswa diajak untuk menganalisa dari informasi titik potong sumbu-X.

$y = x^2 + 3x + 2$ dan $y = 2x^2 + 6x + 4 = 2(x^2 + 3x + 2)$

Diharapkan siswa dapat menyimpulkan bahwa: jika fungsi kuadrat $f(x) = ax^2 + bx + c$ memiliki akar-akar $x = p$ dan $x = q$ maka grafik fungsi kuadrat tersebut akan memotong sumbu-X pada koordinat $(p, 0)$ dan $(q, 0)$. Serta fungsi kuadrat tersebut dapat diubah menjadi

$$f(x) = a(x - p)(x - q)$$

Kegiatan 10.8

Menentukan Fungsi Kuadrat Berdasarkan Titik Potong Sumbu-X

Siswa sudah mengetahui bagaimana cara mendapatkan akar-akar fungsi kuadrat di Kelas 8. Diberikan fungsi kuadrat berikut:

i. $y = x^2 + 3x + 4$

ii. $y = x^2 + 4x + 4$

iii. $y = x^2 - 6x + 5$

Ayo Kita Gali Informasi

a. Tentukan akar-akar tiap-tiap fungsi kuadrat. Tentukan fungsi yang tidak memiliki akar, fungsi yang memiliki satu akar dan fungsi yang memiliki dua akar.

b. Gambarkan grafik tiap-tiap fungsi kuadrat.

c. Tentukan mana fungsi kuadrat yang tidak memotong sumbu-X, fungsi yang memotong sumbu-X di satu titik dan yang memotong sumbu-X di dua titik.

d. Apa yang dapat siswa simpulkan mengenai hubungan akar-akar fungsi kuadrat dengan titik potong sumbu-X?

Diskusi

Misalkan terdapat dua fungsi kuadrat;

$y = x^2 + 3x + 2$ dan $y = 2x^2 + 6x + 4 = 2(x^2 + 3x + 2)$

Diskusikan beberapa pertanyaan berikut.

a. Tentukan akar-akar tiap-tiap fungsi kuadrat. Apakah kedua fungsi kuadrat tersebut memiliki akar-akar yang sama?
b. Gambarkan grafik tiap-tiap fungsi kuadrat. Apakah kedua fungsi kuadrat tersebut memiliki grafik yang sama?

c. Apa yang dapat siswa simpulkan?

d. Jika diketahui akar-akarnya apakah siswa pasti selalu bisa menentukan fungsi kuadratnya?

![Ayo Kita Simpulkan]

Jika fungsi kuadrat \(y = ax^2 + bx + c \) memiliki akar-akar \(x = p \) dan \(x = q \) dengan \(p \neq q \) maka grafik fungsi kuadrat tersebut akan memotong sumbu-X pada koordinat \((p, 0)\) dan \((q, 0)\). Bentuk umumnya adalah \(f(x) = a(x - p)(x - q) \).

Kegiatan 10.9 Menentukan Fungsi Kuadrat Dari Beberapa Informasi

Tujuan dari kegiatan ini adalah untuk memberikan pemahaman kepada siswa bagaimana cara mendapatkan fungsi kuadrat berdasarkan beberapa informasi. Informasinya adalah titik potong dengan sumbu-X dan sumbu-Y, titik puncak dan sumbu-simetri serta titik koordinat lainnya.

Kegiatan ini dibagi menjadi 4:

1. Menentukan fungsi kuadrat jika diketahui tiga koordinat berbeda.
2. Menentukan fungsi kuadrat jika diketahui titik potong sumbu-X dan sumbu-Y.
3. Menentukan fungsi kuadrat jika diketahui titik potong sumbu-X dan titik puncak.
4. Menentukan fungsi kuadrat jika diketahui titik potong sumbu-Y dan titik puncak.

Kegiatan 10.9 Menentukan Fungsi Kuadrat Dari Beberapa Informasi

Pada kegiatan ini siswa akan mempelajari dan menganalisis bagaimana cara menentukan fungsi kuadrat dari beberapa informasi. Informasinya adalah sebagai berikut:

a. Titik potong dengan sumbu-X.
b. Titik potong dengan sumbu-Y.
c. Titik puncak dan sumbu simetri.
d. Beberapa titik koordinat yang dilalui fungsi kuadrat tersebut.
Berdasarkan Kegiatan 10.7 dan 10.8, siswa masih belum bisa menentukan fungsi kuadrat jika hanya diketahui satu informasi dari empat informasi di atas.

1. Jika diketahu tiga koordinat berbeda

Perhatikan gambar di samping. Misalkan terdapat suatu fungsi kuadrat yang grafiknya melalui tiga koordinat berbeda, yakni (0, 1), (1, 3) dan (2, 7).

Apakah siswa bisa menentukan fungsi kuadrat berdasarkan tiga koordinat yang diketahui dan bagaimana caranya?

Perhatikan langkah-langkah berikut:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).

b. Karena melewati koordinat \((0, 1), (1, 3), \) dan \((2, 7)\) diperoleh \(f(0) = 3, f(1) = 3\) dan \(f(2) = 7\).

\[f(0) = a(0)^2 + b(0) + c = 1 \rightarrow c = 1. \] Diperoleh

\[f(x) = ax^2 + bx + 1 \]

\[f(1) = a(1)^2 + b(1) + 1 = 3 \rightarrow a + b + 1 = 3. \] Diperoleh persamaan

\[a + b = 2 \ldots (1) \]

\[f(2) = a(2)^2 + b(2) + 1 = 7 \rightarrow 4a + 2b + 1 = 7. \] Diperoleh persamaan

\[4a + 2b = 6 \ldots (2) \]

c. Dengan mensubstitusi \(a = 2 - b \) ke persamaan (2), diperoleh \(b = 1 \)

d. Dari hasil diperoleh \(a = 1 \)

e. Sehingga fungsi kuadrat yang memenuhi adalah

\[f(x) = ax^2 + bx + c = x^2 + x + 1 \]

\[Ayo Kita Simpulkan \]

Jika grafik fungsi kuadrat \(f(x) = ax^2 + bx + c \) melalui titik koordinat \((p, q)\) diperoleh hubungan \(f(p) = q. \)
2. Jika diketahui titik potong dengan sumbu-X dan sumbu-Y

Perhatikan gambar di samping. Misalkan terdapat suatu grafik fungsi kuadrat yang memotong sumbu-X di (1, 0) dan (4, 0). Fungsi kuadrat tersebut juga memotong sumbu-Y di (0, -4).

Apakah siswa sudah bisa menentukan fungsi kuadratnya dan bagaimana caranya?

Perhatikan langkah-langkah berikut:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).

b. Karena memotong sumbu-X pada di (1, 0) dan (4, 0), dapat dituliskan

\[
\begin{align*}
 f(x) &= ax^2 + bx + c = a(x - 0)(x - 4).
\end{align*}
\]

Diperoleh \(a = 1 \) dan fungsi kuadrat \(f(x) = ax^2 + bx + c = x^2 - 4x \).

\[
\begin{align*}
 &\text{Ayo Kita Simpulkan} \\
 &\text{Jika grafik fungsi kuadrat} \ f(x) = ax^2 + bx + c \ \text{memotong sumbu-X pada titik koordinat} \\
 &\text{(p, 0) dan (q, 0) maka fungsi kuadrat tersebut dapat dituliskan menjadi} \\
 &\text{\(f(x) = a(x - p)(x - q) \)}.
\end{align*}
\]

Jika grafik fungsi kuadrat \(f(x) = ax^2 + bx + c \) memotong sumbu-Y pada titik koordinat (0, \(r \)) maka diperoleh

\[
\begin{align*}
 f(0) &= r.
\end{align*}
\]

Dengan mensubstitusikan nilai \(x = 0 \) pada fungsi kuadrat \(y = ax^2 + bx + c \) diperoleh

\[
\begin{align*}
 f(0) &= c.
\end{align*}
\]

yang berakibat \(r = c \)
3. Jika diketahui titik potong sumbu-X dan titik puncak

Perhatikan gambar disamping. Terdapat suatu fungsi kuadrat yang memotong sumbu-X di (-1, 0). Titik puncak fungsi kuadrat tersebut berada di koordinat (1, -4).

Apakah siswa sudah bisa menentukan fungsi kuadratnya dan bagaimana caranya?

Perhatikan langkah-langkah berikut:

a. Misalkan fungsi kuadratnya adalah $f(x) = ax^2 + bx + c$.

b. Dari grafik disamping diperolehsumbu simetri $x = 1$. Berdasarkan sifat simetri, titik potong di sumbu-X yang lain adalah hasil pencerminan koordinat (-1, 0) terhadap garis $x = 1$, yakni pada koordinat $x = (3, 0)$.

c. Sehingga fungsi kuadratnya dapat dinyatakan dengan

$$f(x) = ax^2 + bx + c = a(x + 1)(x - 3)$$

d. Karena titik puncak berada di (1, -4) maka diperoleh $f(1) = -4$.

$$f(1) = a(1 + 1)(1 - 3)$$

$$-4 = a 	imes (-4)$$

diperoleh $a = 1$ dan fungsi kuadrat $f(x) = (x + 1)(x - 3) = x^2 - 2x - 3$.

4. Jika diketahui titik potong sumbu-Y dan titik puncak

Perhatikan gambar disamping. Terdapat suatu fungsi kuadrat yang memotong sumbu-Y di (0, 3). Titik puncak fungsi kuadrat tersebut berada di koordinat (-2, 1).

Apakah siswa sudah bisa menentukan fungsi kuadratnya dan bagaimana caranya?

Perhatikan langkah-langkah berikut:
a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).

b. Dari grafik disamping diperoleh sumbu simetri \(x = -2 \). Berdasarkan sifat simetri, jika titik \((0, 3)\) dicerminkan terhadap garus \(x = -2 \) diperoleh koordinat \((-4, 3)\).

c. Sehingga grafik fungsi kuadrat tersebut melalui tiga titik koordinat yaitu
\((0, 3), (-2, 1), \) dan \((-4, 3)\)

d. Dengan menggunakan cara seperti pada Sub-Kegiatan 3.1, diperoleh
\[a = \frac{1}{8}, \quad b = \frac{1}{4}, \quad \text{dan} \quad c = 3 \]

e. Sehingga didapatkan fungsi kuadrat \(f(x) = \frac{1}{8}x^2 - \frac{1}{4}x + 3 \).

Materi Esensi

Menentukan Fungsi Kuadrat

Setelah melakukan semua kegiatan, guru menjelaskan materi bagaimana mendapatkan fungsi kuadrat berdasarkan beberapa informasi. Informasinya adalah sebagai berikut:

a. Titik potong dengan sumbu-\(X\).
b. Titik potong dengan sumbu-\(Y\).
c. Titik puncak dan sumbu simetri.
d. Beberapa titik koordinat yang dilalui fungsi kuadrat tersebut.

Materi Esensi

Menentukan Fungsi Kuadrat

Untuk menentukan fungsi kuadrat diperlukan beberapa informasi, diantaranya:

1. Beberapa titik koordinat yang dilalui fungsi kuadrat tersebut.
2. Titik potong fungsi kuadrat tersebut di sumbu-\(X\).
3. Titik potong fungsi kuadrat tersebut di sumbu-\(Y\).
4. Titik puncak dan sumbu simetri.
Langkah pertama untuk mendapatkannya adalah dengan memisalkan fungsi kuadrat tersebut dengan \(f(x) = ax^2 + bx + c \). Berikut ini adalah langkah selanjutnya berdasarkan informasi-informasi di atas.

1. Jika diketahui beberapa titik koordinat yang lain.
 Jika fungsi kuadrat tersebut melalui koordinat \((p, q)\), maka diperoleh \(f(p) = q \).

2. Jika diketahui titik potong fungsi kuadrat tersebut di sumbu-X.
 Jika fungsi kuadrat memotong sumbu-X di \((p, 0)\) dan \((q, 0)\) maka fungsi kuadrat tersebut dapat dituliskan menjadi \(f(x) = a(x - p)(x - q) \).

3. Jika diketahui titik potong fungsi kuadrat tersebut di sumbu-Y.
 Jika fungsi kuadrat memotong sumbu-Y di \((0, r)\) maka diperoleh
 \[
 f(0) = r
 \]
 Dengan mensubstitusikan nilai \(0\) pada \(f(x) \) diperoleh
 \[
 f(0) = a(0)^2 + b(0) + c = c.
 \]
 Sehingga diperoleh \(c = r \).

4. Jika diketahui titik puncak dan sumbu simetri.
 Jika fungsi kuadrat kuadrat tersebut memiliki titik puncak di \((s, t)\) maka diperoleh sumbu simetri fungsi kuadrat tersebut adalah garis
 \[
 x = s
 \]

Selanjutnya jila diketahui fungsi kuadrat tersebut melalui \((e, d)\) maka dengan menggunakan sifat simetri diperoleh titik koordinat yang lain hasil pencerminan koordinat \((e, d)\) terhadap garis \(x = s \).

Contoh 10.5

Menentukan Fungsi Kuadrat I

Pada Contoh 10.5, siswa diajak untuk menentukan fungsi kuadrat jika diketahui tiga titik koordinat.

Contoh 10.5

Menentukan Fungsi Kuadrat I

Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat \((-1, -1), (0, 4)\) dan \((1, 5)\).

Alternatif Penyelesaian:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).

b. Karena melalui titik koordinat \((-1, -1), (0, 4)\), dan \((1, 5)\) diperoleh \(f(-1) = -1 \), \(f(0) = 4 \) dan \(f(1) = 5 \).
- \(f(0) = a(0)^2 + b(0) + c = 4 \rightarrow c = 4 \).

Diperoleh
\[f(x) = ax^2 + bx + 4 \]
- \(f(-1) = a(-1)^2 + b(-1) + 4 = -1 \rightarrow a - b + 4 = -1 \). Diperoleh persamaan
\[a - b = -5 \quad (1) \]
- \(f(1) = a(1)^2 + b(1) + 4 = 5 \rightarrow a + b + 4 = 5 \). Diperoleh persamaan
\[a + b = 1 \quad (2) \]

Dengan menjumlahkan persamaan (1) dan (2) diperoleh
\[2a = -4 \rightarrow a = -2 \]

Kemudian \(b = 1 - a = 1 - (-2) = 3 \).
c. Diperoleh nilai \(a = -2 \), \(b = 3 \) dan \(c = 4 \), sehingga fungsi kuadratnya adalah
\[f(x) = -2x^2 + 3x + 4. \]

Contoh 10.6
Menentukan Fungsi Kuadrat II

Pada Contoh 10.6, siswa diajak untuk menentukan fungsi kuadrat jika diketahui titik potong sumbu-\(X \) dan sumbu-\(Y \).

Alternatif Penyelesaian:

a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).
b. Karena memotong sumbu-\(X \) pada koordinat \((-2, 0)\) dan \((3, 0)\), fungsi kuadratnya dapat diubah menjadi
\[f(x) = a(x + 2)(x - 3). \]
c. Karena memotong sumbu-Y pada koordinat $(0, 3)$ diperoleh $f(0) = 3$

$$f(0) = a(0 + 2)(0 - 3) = -6a$$

Sehingga diperoleh $-6a = 3 \rightarrow a = \frac{-1}{2}$

d. Diperoleh fungsi kuadrat

$$f(x) = -\frac{1}{2} (x + 2)(x - 3) = -\frac{1}{2} (x^2 - x - 6) = -\frac{1}{2} x^2 + \frac{1}{2} x^2 + 3.$$
- \(f(0) = a(0)^2 + b(0) + c = 1 \rightarrow c = 1 \). Diperoleh
\[
 f(x) = ax^2 + bx + 1
\]
- \(f(-1) = a(-1)^2 + b(-1) + 1 = 3 \rightarrow a - b + 1 = 3 \). Diperoleh persamaan
\[
 a - b = 2 \quad (1)
\]
- \(f(-2) = a(-2)^2 + b(-2) + 1 = 1 \rightarrow 4a - 2b + 1 = 1 \) Diperoleh persamaan
\[
 2a - b = 0 \quad (2)
\]
Dengan mengurangi persamaan (1) dan (2) diperoleh
\[
 -a = 2 \rightarrow a = -2
\]
Kemudian \(b = 2a = 2(-2) = -4 \).
f. Diperoleh nilai \(a = -2 \), \(b = -4 \) dan \(c = 1 \), sehingga fungsi kuadratnya adalah
\[
 f(x) = -2x^2 - 4x + 1
\]

Contoh 10.8

Menentukan Fungsi Kuadrat

Pada Contoh 10.8, siswa diajak untuk menentukan fungsi kuadrat jika diketahui salah satu titik potong sumbu-X, titik potong sumbu-Y serta sumbu simetri.

Contoh 10.8

Menentukan Fungsi Kuadrat

Tentukan fungsi kuadrat yang grafiknya memiliki sumbu simetri \(x = \frac{1}{2} \) yang memotong sumbu-X pada titik koordinat (2, 0) dan memotong sumbu-Y pada koordinat (0, 2).

![Diagram Fungsi Kuadrat](image)

Alternatif Penyelesaian:
a. Misalkan fungsi kuadratnya adalah \(f(x) = ax^2 + bx + c \).
b. Berdasarkan sifat simetri, jika titik $(2, 0)$ dicerminkan terhadap garis $x = \frac{-1}{2}$ diperoleh titik koordinat $(-3, 0)$.

c. Karena memotong sumbu-X pada koordinat $(2, 0)$ dan $(-3, 0)$, fungsi kuadratnya dapat diubah menjadi

$$f(x) = a(x + 3)(x - 2).$$

d. Karena memotong sumbu-Y pada koordinat $(0, 2)$ diperoleh $f(0) = 2$

$$f(0) = a(0 + 3)(0 - 2) = -6a$$

Sehingga diperoleh $-6a = 2 \rightarrow a = \frac{-1}{3}$

e. Diperoleh fungsi kuadrat

$$f(x) = \frac{-1}{3} (x + 3)(x - 2) = \frac{-1}{3} (x^2 + x - 6) = \frac{-1}{3} x^2 - \frac{1}{3} x^2 + 2$$

Tahukah Kamu

Ketika siswa menggambar grafik fungsi linear dan grafik fungsi kuadrat (atau menggambar dua grafik fungsi kuadrat) dimungkinkan kedua grafik tersebut saling berpotongan.

Dari gambar di atas grafik fungsi linear $y = x - 1$ dan grafik fungsi kuadrat $y = x^2 - 5x + 4$ berpotongan pada dua titik koordinat, yaitu $(0, 1)$ dan $(5, 4)$. Sedangkan grafik fungsi kuadrat $y = x^2 - 5x + 4$ dan $y = x^2 - 4x + 2$ berpotongan pada satu titik koordinat, yaitu $(2, -2)$.

"MATEMATIKA" 535
Siswa juga dapat menentukan titik potongnya tanpa menggambar grafik. Caranya adalah dengan “menyamakannya”.

1. Titik potong grafik fungsi linear dan fungsi kuadrat.
Fungsi linear : \(y = -x + 1 \), fungsi kuadrat : \(y = x^2 - 5x + 4 \)

Dengan menyamakan kedua fungsi di atas diperoleh

\[
\begin{align*}
x^2 - 5x + 4 &= x - 1 \\
x^2 - 5x + 4 - x + 1 &= 0 \\
x^2 - 6x + 5 &= 0 \\
(x - 1)(x - 5) &= 0 \\
\end{align*}
\]

Diperoleh \(x = 1 \) atau \(x = 5 \).

Dari nilai \(x \) di atas siswa dapat memperoleh nilai \(y \) dengan mensubstitusikan nilai \(x \) pada salah satu fungsi.

Untuk \(x = 1 \) \(\rightarrow y = x - 1 = 1 - 1 = 0 \), diperoleh titik koordinat (1, 0).

Untuk \(x = 5 \) \(\rightarrow y = x - 1 = 5 - 1 = 4 \), diperoleh titik koordinat (5, 4).

Jadi titik potongnya pada titik koordinat (1, 0) dan (3, 2).

2. Titik potong dua fungsi kuadrat.
Fungsi kuadrat \(f_1(x) = x^2 - 5x + 4 \) dan \(f_2(x) = x^2 - 4x + 2 \)

Karena yang dicari titik potong maka \(f_1(x) = f_2(x) \), selanjutnya didapatkan

\[
\begin{align*}
x^2 - 5x + 4 &= x^2 - 4x + 2 \\
x^2 - 5x + 4 - (x^2 - 4x + 2) &= 0 \\
x + 2 &= 0 \\
\end{align*}
\]

Diperoleh \(x = 2 \).

Dari nilai \(x \) di atas siswa dapat memperoleh nilai \(y \) dengan mensubstitusikan nilai \(x \) pada salah satu fungsi.

Untuk \(x = 2 \) \(\rightarrow y = x^2 - 5x + 4 = (2)^2 - 5(2) + 4 = -2 \), diperoleh titik koordinat (2, -2).

Jadi titik potongnya pada titik koordinat (2, -2).

![Ayo Kita Tinjau Ulang](image)

Pada bagian ini, siswa diajak untuk mengerjakan atau mengenalisa beberapa soal tambahan mengenai “menentukan fungsi kuadrat”. Diharapkan melalui Ayo Kita Tinjau Ulang siswa semakin memahami mengenai materi ini.
1. Untuk suatu bilangan bulat \(p > q > 0 \), apakah terdapat suatu fungsi kuadrat \(y = ax^2 + bx + c \) yang melalui titik koordinat \((1, p)\) dan \((1, q)\)?
Jelaskan alasanmu.

2. Untuk suatu bilangan bulat \(p > q > r > 0 \), apakah terdapat suatu fungsi kuadrat \(y = ax^2 + bx + c \) yang melalui titik koordinat \((2, p)\), \((2, p)\) dan \((2, r)\)?
Jelaskan alasanmu.

3. Apakah mungkin grafik fungsi linear dan grafik fungsi kuadrat berpotongan di tiga titik koordinat berbeda?
Jelaskan alasanmu.

4. Apakah mungkin dua grafik fungsi kuadrat berpotongan di tiga titik koordinat berbeda?
Jelaskan alasanmu.

Penyelesaian:

1. Tidak mungkin, karena tidak mungkin garis vertikal memotong fungsi kuadrat \(y = ax^2 + bx + c \) pada dua titik koordinat yang berbeda.

2. Tidak mungkin, karena tidak mungkin garis horizontal memotong fungsi kuadrat \(y = ax^2 + bx + c \) pada tiga titik koordinat yang berbeda.

3. Tidak mungkin, karena paling banyak berpotongan pada dua titik yang berbeda.

4. Tidak mungkin, karena paling banyak berpotongan pada dua titik yang berbeda.

Latihan 10.3

Menentukan Fungsi Kuadrat

1. Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat \((-1, 1)\), \((0, -4)\), \((1, -5)\).

\textbf{Penyelesaian: } f(x) = 2x^2 - 3x - 4.

2. Tentukan fungsi kuadrat yang grafiknya memotong sumbu-\(X\) pada titik koordinat \((4, 0)\) dan \((-3, 0)\) serta melalui titik koordinat \((2, -10)\).

\textbf{Penyelesaian: } f(x) = x^2 - x - 12.

3. Tentukan fungsi kuadrat yang grafiknya memotong sumbu-\(Y\) pada koordinat \((-2, 0)\) dan memiliki titik puncak pada koordinat \((2, -16)\).

\textbf{Penyelesaian: } f(x) = x^2 - 4x - 12.

4. Tentukan fungsi kuadrat yang grafiknya memotong sumbu-\(Y\) pada koordinat \((0, 4)\), melalui titik koordinat \((-1, -1)\) dan memiliki sumbu simetri \(x = 2\).
Penyelesaian: \(f(x) = -x^2 + 4x + 4 \).

5. Tantangan. Tentukan fungsi kuadrat yang grafiknya melalui \((12, 0), (0, 3)\) dan \((0, -2)\).

Penyelesaian: Tidak ada fungsi kuadrat yang memenuhi, karena tidak mungkin fungsi kuadrat memotong sumbu-\(X\) dua kali.

6. Untuk suatu bilangan bulat \(p\), tentukan fungsi kuadrat yang grafiknya melalui titik koordinat \((p, 0)\) dan \((-p, 0)\) dan \((0, p)\).

Penyelesaian: \(f(x) = \frac{1}{p} x^2 - 2x + p \).

7. Tentukan semua titik potong grafik fungsi linear \(y = x + 1\) dengan fungsi kuadrat \(y = x^2 - 5x + 4\).

Penyelesaian: Titik potong \(=(1, 0)\) dan \((5, 4)\)

8. Tentukan semua titik potong grafik fungsi kuadrat \(y = x^2 - 6x + 4\) dengan fungsi kuadrat \(y = x^2 - 8x\).

Penyelesaian: Titik potong \(=(2, -12)\)

9. Tantangan. Tentukan nilai \(a\) dan \(b\) agar grafik fungsi linear \(y = ax + b\) memotong grafik fungsi kuadrat \(y = x^2 - 4x + 2\) tepat pada satu titik koordinat yakni \((3, -1)\). (Kalau diperlukan dapat menggunakan grafik).

Penyelesaian:
Dari persamaan \(x^2 - 4x + 2 = ax + b\) diperoleh
\[
x^2 - (4 - a)x + (2 - b) = 0 \quad \ldots. (1)
\]
Karena titik perpotongan hanya pada satu titik koordinat yakni \((3, -1)\) maka fungsi kuadrat pada Persamaan \((1)\) hanya mempunyai satu akar yakni \(x = 3\), atau dapat ditulisikan dengan
\[
x^2 - (4 - a)x + (2 - b) = (x - 3)(x - 3)
\]
\[
= x^2 - 6x + 9
\]
Diperoleh \(4 - a = 6 \rightarrow a = -2\) dan \(2 - b = 9 \rightarrow b = -7\).

10. Dari fungsi kuadrat \(y = 2x^2 - 12x + 16\) akan dibuat suatu segitiga. Titik-titik sudut segitiga tersebut merupakan titik potong sumbu-\(X\) dan titik puncak. Tentukan luas segitiga tersebut.

Penyelesaian:
Fungsi kuadrat \(2x^2 - 12x + 16\) dapat diubah menjadi
\[
2x^2 - 12x + 16 = 2(x^2 - 6x + 8)
\]
\[
= 2(x - 2)(x - 4)
\]
Diperoleh titik potong sumbu-X pada titik koordinat $(2, 0)$ dan $(4, 0)$. Sumbu simetri adalah $x = \frac{-b}{2a} = \frac{12}{4} = 3$. Koordinat titik puncak adalah $(3, f(3)) = (3, -2)$. Perhatikan gambar di bawah.

![Diagram Graph](image)

Luas segitiga adalah $\frac{1}{2}a(2) = 2$ satuan luas.

D. Aplikasi Fungsi Kuadrat

Pada sub-bab ini siswa akan mempelajari beberapa aplikasi fungsi kuadrat dalam kehidupan sehari-hari.

Pertanyaan Penting

Berikan penjelasan pada siswa mengenai aplikasi dari fungsi kuadrat dan kegunannya dalam kehidupan nyata.

Pertanyaan Penting

Bagaimana aplikasi fungsi kuadrat pada kehidupan nyata?
Kegiatan 10.10 Menentukan Fungsi Kuadrat Dari Beberapa Informasi

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan
1. Penggaris berukuran 100 cm atau 30 cm.
2. Stop watch atau jam tangan atau jam dinding
3. Koin

Setelah kegiatan ini siswa diharapkan dapat menurunkan persamaan kuadrat dan menentukan tinggi dari maksimum yang dicapai koin. Untuk itu siswa harus melakukan Ayo Kita Mengamati.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai persamaan kuadrat dan menentukan tinggi dari maksimum yang dicapai koin.

Kegiatan 10.10 Lompat Trampolin

Lompat trampolin adalah sebuah permainan di mana seseorang akan dilemparkan ke udara dengan menggunakan trampolin seperti yang terlihat pada gambar di bawah ini. Pada suatu hari diadakan suatu kompetisi lompat trampolin dimana dengan peserta lompatan tertinggi akan keluar menjadi pemenang. Untuk menentukan tinggi dari lompatan, panitia menyiapkan suatu alat ukur berupa penggaris dengan ukuran 5 meter yang dipasang secara vertikal disebelah trampolin sehingga tinggi dari lompatan peserta bisa dilihat dari penggaris ini. Namun dengan menggunakan metode ini panitia mengalami masalah yaitu ketika ada peserta yang lompatannya melebihi 5 meter. Untuk menyelesaikan hal ini lakukanlah kegiatan di bawah ini sebagai simulasi.

Sumber: http://tahu-x.blogspot.com
Ayo Kita Amati

1. Siapkan penggaris berukuran 100 cm atau 30 cm.
2. Siapkan stop watch atau jam tangan atau jam dinding
3. Siapkan koin atau benda kecil yang bisa dilempar keatas
4. Buatlah kelompok minimal terdiri dari tiga orang yang mana bertugas untuk memelihara koin, mengamati uji coba dan mencatat.
5. Letakkan penggaris secara vertikal dan bilangan nol letakkan pada posisi di bawah.
6. Leparkan koin atau benda kecil yang siswa siapkan dengan posisi lemparannya di titik nol pada penggaris.
7. Amati waktu yang diperlukan koin untuk mencapai tinggi 100 cm atau 30 cm (sesuaikan dengan penggaris yang siswa bawa).
8. Lakukan kegiatan ini sebanyak 10 kali dan isi tabel berikut ini

<table>
<thead>
<tr>
<th>Percobaan ke-</th>
<th>Waktu yang diperlukan untuk mencapai 100 cm atau 30 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

Ayo Kita Mencoba

Pada teori fisika terdapat persamaan yang berhubungan dengan kegiatan di atas, yaitu

\[h(t) = v_0 t - \frac{1}{2} gt^2 \]

dengan \(h \) menyatakan tinggi benda, \(v_0 \) menyatakan kecepatan awal atau kecepatan disaat waktu sama dengan nol, \(t \) menyatakan waktu dan \(g \) menyatakan...
koefisien dalam gaya gravitasi yang bernilai 9,8. Dari kegiatan di atas informasi apa saja yang bisa siswa dapat tentukan dan beri penjelasannya.

Petunjuk: Melalui uji coba dapatkan v_0 sehingga didapatkan fungsi kuadrat dari ketinggian. Dengan fungsi ini dapat ditentukan tinggi maksimum yang dapat dicapai koin.

Ayo Kita

Simpulkan

Tentukan hubungan antara Kegiatan 10.10 dengan permasalahan panitia lompat trampolin di atas. Dan bagaimana pemecahan masalahnya.

Petunjuk: Koin yang dilempar pada kegiatan ini adalah prototype dari manusia melompat pada trampolin. Dengan kata lain kita dapat menentukan tinggi lompatan seseorang pada trampolin dengan mencatat waktu yang diperlukan orang tersebut untuk mencapai tinggi tertentu.

Kegiatan 10.11

Membuat Balok

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan
1. Kertas karton
2. Gunting
3. Penggaris

Setelah kegiatan ini siswa diharapkan dapat menurunkan persamaan kuadrat dari kasus pembuatan kubus kubus dan dapat menentukan nilai optimal. Untuk itu siswa harus melakukan **Ayo Kita Menalar** untuk memancing pemikiran siswa mengenai rumus jarak.

Setelah kegiatan ini guru harus membuat kesimpulan persamaan kuadrat dari kasus pembuatan kubus kubus dan dapat menentukan nilai optimal.

Kegiatan 10.11

Membuat Balok

Seorang pengusaha es ingin membuat cetakan untuk es. Untuk itu dia menyediakan sehelai kayu berukuran 2,5 meter \times 1 meter. Dengan kayu ini dia ingin membentuk cetakan berbentuk balok dengan tinggi 1 meter tanpa alas dan tutup. Sebagai pengusaha dia ingin menghasilkan es semaksimal mungkin. Selesaikan permasalahan ini dengan melakukan kegiatan berikut.
1. Siapkan kertas karton berukuran 25 cm × 10 cm.
2. Buatlah balok atau kubus tanpa alas dan tutup dengan tinggi 10 cm dari kertas tersebut dengan cara melipat seperti pada contoh gambar berikut ini.

Sumber: Dokumen Kemdikbud

3. Hitunglah volume balok yang siswa buat.
4. Lakukan kegiatan ini sebanyak sepuluh kali dengan menggunakan kertas yang sama tapi ukuran baloknya berbeda.
5. Isilah tabel berikut ini.

<table>
<thead>
<tr>
<th>Balok ke-</th>
<th>Volume balok</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

Dari kesepuluh balok yang siswa buat, balok nomor berapakah yang mempunyai volume terbesar? Mungkinkah dibuat balok yang lain dengan volumenya lebih besar daripada volume balok tersebut?
Petunjuk:

\[V = p \times l \times t \]

Dari permasalahn tinggi sudah diketahui yaitu 10 dan \(p + l = 25 \) sehingga fungsi dari volume didapat

\[V = 10(25p - p^2) \]

Supaya volume maksimum maka \(p = 12,5 \) cm dan \(l = 12,5 \) cm

Ayo Kita Simpulkan

Tentukan hubungan hasil dari Kegiatan 10.11 di atas dengan kasus yang ada pada Kegiatan 10.11 ini. Bagaimana siswa menyelesaikan kasus yang dihadapi oleh pengusaha tersebut?

Petunjuk: Dengan pemodelan yang sama untuk kasus sebenarnya supaya volumenya maksimum didapat panjang = lebar = 1,25 meter.

Kegiatan 10.12 Membuat Persegi

Sebelum kegiatan ini guru mengumumkan pada siswanya untuk mempersiapkan

1. kertas karton
2. penggaris
3. gunting

Setelah kegiatan ini siswa diharapkan dapat menurunkan persamaan kuadrat dari kasus pembuatan persegi dan menentukan nilai optimalnya. Untuk itu siswa harus melakukan Ayo Kita Menalar.

Dan setelah kegiatan ini guru harus membuat kesimpulan mengenai persamaan kuadrat dari kasus pembuatan persegi dan menentukan nilai optimalnya.

Kemudian setelah kegiatan ini lakukan diskusi dan berbagi mengenai subbab ini. Lihat bagian Diskusi dan Berbagi dan berikan stimulus kepada siswa untuk bertanaya (bagian Silakan Bertanya).

Kegiatan 10.12 Membuat Persegi

Seorang pengusaha emas mendapatkan pesanan 10 lempeng emas berbentuk segitiga samasisi dengan ukuran sisinya adalah 10 cm. Akibat dari produksi ini, bahan untuk
pembuatan emas yang dia miliki telah habis. Selanjutnya ternyata ada kabar yang mengejutkan yaitu si pembeli tidak ingin membeli emas berbentuk segitiga namun dia ingin membeli emas berbentuk persegi panjang sebanyak 10 dengan ukuran yang sama dan dia akan membayarnya dengan harga dua kali lipat dari harga sebelumnya. Karena bahannya sudah habis maka si pengusaha harus memotong emas berbentuk segitiga menjadi persegi panjang. Karena si pengusaha ingin mendapat keuntungan maksimal maka dia harus membuat emas berbentuk persegi panjang dengan luas maksimal. Selesaikan permasalahan ini dengan melakukan kegiatan berikut.

1. Siapkan kertas karton.
2. Buatlah segitiga sama sisi dengan ukuran sisi 10 cm.
4. Hitunglah luas dari persegi panjang tersebut.
5. Lakukan kegiatan ini sebanyak sepuluh kali.
6. Isilah tabel berikut ini

<table>
<thead>
<tr>
<th>Persegi Panjang ke-</th>
<th>Luas Persegi Panjang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>Persegi Panjang ke-</td>
<td>Luas Persegi Panjang</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

Ayo Kita Menalar

Dari keseputuh persegi panjang yang siswa buat, persegi panjang nomor berapakah yang mempunyai luas terbesar? Mungkinkah dibuat persegi panjang yang lain dengan luas lebih besar daripada luas persegi panjang tersebut? Hubungkan hasil dari Kegiatan 10.12 ini dengan kasus yang ada pada Kegiatan 10.12 ini! Bagaimana siswa menyelesaikan kasus yang dihadapi oleh pengusaha tersebut?

Berdasarkan kesebangunan didapatkan hubungan:

\[
\frac{a}{l} = \frac{5}{5\sqrt{3}}
\]

atau

\[
l = \sqrt{3}a
\]

Dan hubungan yang lain adalah

\[
p = 10 - 2a
\]

sehingga

\[
L(a) = p \times l = (10 - 2a) \times \sqrt{3}a = 10\sqrt{3}a - 2\sqrt{3}a^2
\]

Dengan demikian supaya luas maksimum ukuran persegi panjangnya adalah \(p = 10 - 2a = 10 - 5 = 5 \) dan \(l = \sqrt{3} \left(\frac{10}{4} \right) \)
Carilah aplikasi fungsi kuadrat yang ada pada kehidupanmu sehari-hari.

Buatlah pertanyaan dari hasil diskusi di atas!

Materi Esensi

Aplikasi Fungsi Kuadrat

Pada bagian ini jelaskan pada siswa mengenai Algoritma untuk menyelesaikan masalah kehidupan nyata yang berhubungan dengan optimalisasi fungsi kuadrat.

Materi Esensi

Aplikasi Fungsi Kuadrat

Berikut langkah-langkah untuk menyelesaikan masalah optimalisasi fungsi kuadrat

Langkah 1. Tentukan variabel yang akan dioptimalisasi yaitu \(y \) dan variabel yang bebas yaitu \(x \)

Langkah 2. Jika model \(y = ax^2 + bx + c \) tidak diketahui maka bentuklah model \(y = ax^2 + bx + c \) dari permasalahan

Langkah 3. Tentukan nilai optimum dari model yang didapatkan pada Langkah 2.

Contoh 10.9

Tukang Talang Air

Dengan membaca contoh ini diharapkan siswa dapat menerapkan algoritma yang telah dibahas pada materi pembelajaran.

Contoh 10.9

Tukang Talang Air

Pekerjaan Pak Suradi adalah pembuat Talang Air. Ia mendapat pesanan membuat sebuah Talang Air dari lembaran seng yang lebarnya 40 cm dengan melipat lebarnya atas tiga bagian seperti terlihat pada Gambar di bawah ini. Tentukan nilai \(x \) supaya volume dari talang maksimum.
Alternatif Penyelesaian:

Diketahui : Lembaran seng yang lebarnya 40 cm akan dibuat talang seperti gambar di atas.

Ditanya : Ukuran talang supaya maksimum

Penyelesaian :

Langkah 1. Menentukan variabel yang akan dioptimalisasi yaitu \(y \) dan variabel yang bebas yaitu \(x \)

Variabel \(y \) dalam kasus ini adalah luas sisi talang dan variabel \(x \) seperti terlihat pada gambar

Langkah 2. Model permasalahan ini adalah \(y = x (0,5(40 - x)) = 20x - \frac{1}{2}x^2 \) yakni \(a = -\frac{1}{2}, b = 20 \) dan \(c = 0 \)

Langkah 3. Agar \(y \) optimum maka nilai \(x \) adalah

\[
\frac{b}{2a} = \frac{-20}{2\left(-\frac{1}{2}\right)} = -20 \text{ cm}.
\]

Contoh 10.10 Tinggi Balon Udara

Dengan membaca contoh ini diharapkan siswa dapat menerapkan algoritma yang telah dibahas pada materi pembelajaran.

Contoh 10.10 Tinggi Balon Udara

Tinggi dari balon udara dalam \(x \) waktu dapat dinyatakan dalam bentuk fungsi \(f(x) = -16x^2 + 112x - 91 \) meter. Tentukan tinggi maksimum balon udara.

Alternatif Penyelesaian:

Diketahui : Fungsi \(f(x) = -16x^2 + 112x - 91 \) merupakan tinggi balon udara

Ditanya : Tinggi maksimum balon udara
Penyelesaian :

Langkah 1. Tentukan variabel yang akan dioptimalisasi; yaitu, \(y \) dan variabel yang bebas; yaitu \(x \)

Variabel \(y \) dalam kasus ini adalah \(f(x) \); yaitu fungsi tinggi balon

Langkah 2. Model \(f(x) = -16x^2 + 112x - 91 \)

Langkah 3. Tinggi maksimum

\[
y_o = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{(112)^2 - 4(-16)(-91)}{4(-16)} = \frac{6.720}{-64} = 105 \text{ meter}
\]

Contoh 10.11
Luas Kebun

Seorang tukang kebun ingin memagari kebun yang dia miliki. Dia hanya bisa memagari kebun dengan keliling 100 m. Jika pagar yang diinginkan berbentuk persegi panjang, Berapa luas maksimum kebun yang bisa dipagari?

Alternatif Penyelesaian:

Diketahui : Diketahui keliling kebun yang akan dipagari 100 meter

Ditanya : Luas maksimum kebun yang akan dipagari

Penyelesaian:

\[
\begin{align*}
\text{Luas} &= x(0,5(100 - 2x)) = 50x - x^2 \\
\end{align*}
\]
Langkah 3. Luas maksimum

\[y_o = \frac{D}{4a} = \frac{b^2 - 4ac}{4a} = \frac{(50)^2 - 4(-1)(0)}{4(-1)} = \frac{2500}{-4} = 625 \text{ meter} \]

Ayo Kita Simpulkan

Berdasarkan contoh di atas, tuliskan langkah-langkah untuk menyelesaikan masalah optimalisasi fungsi kuadrat.

Ayo Kita Tinjau Ulang

Pada bagian ini siswa diharapkan lebih mengerti mengenai contoh-contoh yang telah diberikan di atas dengan cara melakukan latihan-latihan ini. Pada soal nomor 1, 2 dan 3 merupakan perkembangan dari Contoh 10.9, 10.10 dan 10.11.

Ayo Kita Tinjau Ulang

1. Pada Contoh 10.9, bagaimana ukuran talang jika bentuk gambarnya sebagai berikut. Apakah menghasilkan hal yang sama?

 ![Gambar talang](image)

 Alternatif Penyelesaian:
 Diketahui : Lembaran seng yang lebarnya 40 cm akan dibuat talang seperti gambar di atas.
 Ditanya : Ukuran talang supaya maksimum
 Penyelesaian :
 Langkah 1. Menentukan variabel yang akan dioptimalisasi yaitu \(y \) dan variabel yang bebas yaitu \(x \).
 Variabel \(y \) dalam kasus ini adalah luas sisi talang dan variabel \(x \) seperti terlihat pada gambar.
Langkah 2. Model permasalahan ini adalah \(y = x(40 - 2x) = 40x - 2x^2 \) yakni \(a = -2, \ b = 40 \) dan \(c = 0 \)

Langkah 3. Agar \(y \) optimum maka nilai \(x \) adalah \(-\frac{b}{2a} = -\frac{40}{2(-2)} = 10 \) cm.

menghasilkan hal yang sama. Karena objek yang dimodelkan sama.

2. Pada Contoh 10.10, bagaimana jika \(f(x) = -16x^2 + 112x - 111 \)? Apa yang terjadi? Bagaimana hal itu bisa terjadi? Jelaskan?

Alternatif Penyelesaian:

Diketahui : fungsi \(f(x) = -16x^2 + 112x - 111 \) merupakan tinggi balon udara

Ditanya : Tinggi maksimum balon udara

Penyelesaian :

Langkah 1. Tentukan variabel yang akan dioptimalisasi; yaitu, \(y \) dan variabel yang bebas; yaitu, \(x \)

Variabel \(y \) dalam kasus ini adalah \(f(x) \); yaitu fungsi tinggi balon

Langkah 2. Model \(f(x) = -16x^2 + 112x - 91 \)

Langkah 3. Tinggi maksimum

\[
y_o = \frac{D}{4a} = \frac{b^2 - 4ac}{4a} = \frac{(112)^2 - 4(-16)(-111)}{4(-16)} = \frac{5440}{-64} = 85 \text{ meter}
\]

Latihan 10.4

Aplikasi Fungsi Kuadrat

1. Suatu persegi panjang kelilingnya 60 cm. Tentukan ukuran persegi panjang agar mempunyai luas maksimum.

Penyelesaian:

Keliling = 2(panjang + lebar)

Maka

\[
30 = p + l \text{ atau } p = 30 - l
\]

Dengan demikian fungsi luasnya adalah

\[
L(l) = p \times l = (30 - l)l = 30l - l^2
\]

Karena yang diinginkan luas maksimum maka

\[
l = \frac{30}{2(-1)} = 15 = 15
\]
Didapat

\[p = 30 - l = 30 - 15 = 15 \]

2. Selimbar karton berbentuk persegi panjang akan dibuat kotak tanpa tutup dengan cara membuang persegi seluas \(s \times s \) \(\text{cm}^2 \) di tiap pojoknya. Jika karton tersebut berukuran 30 \(\times \) 40 \(\text{cm}^2 \). Tentukan volume kotak maksimum?

Penyelesaian:
Fungsi volumenya adalah

\[V(s) = (30 - 2s)(40 - 2s)s \]

atau

\[V(s) = (1.200 - 140s + 4s^2)s \]

Maka supaya volumenya maksimum haruslah

\[1.200 - 280s + 12s^2 = 0 \]

atau

\[s = 17.6759 \text{ atau } s = 5.6574 \]

3. Sebuah segitiga siku-siku jumlah kedua sisi siku-sikunya adalah 50 cm. Tentukan ukuran segitiga siku-siku agar mempunyai luas maksimum.

Penyelesaian:
Tinggi dari segitiga dapat ditentukan dengan menggunakan teorema phytagoras yaitu dimisalkan sisi yang ketiga adalah \(s \) sehingga tinggi segitiga adalah

\[t = \sqrt{2.500 - \frac{1}{4}s^2} \]

Jadi fungsi luas adalah

\[L(s) = \frac{1}{2} s \sqrt{2.500 - \frac{1}{4}s^2} \]

Misal \(t = s^2 \) maka

\[L(t) = \frac{1}{2} \sqrt{2.500t - \frac{1}{4}t^2} \]

Dengan demikian supaya \(L \) maksimum maka \(\sqrt{2.500t - \frac{1}{4}t^2} \) harus maksimum sehingga

\[t = \frac{2.500}{2 \left(\frac{1}{4} \right)} = 5.000 \]

Dengan demikian \(s = \sqrt{t} = \pm \sqrt{5.000} \). Karena jarak bernilai positif maka \(s = \sqrt{5.000} \).
4. Seorang siswa memotong selembar kertas. Kain hasil potongannya berbentuk persegi panjang dengan keliling 80 cm. Apabila siswa tersebut berharap mendapatkan kain hasil potongan mempunyai luas maksimum, tentukan panjang dan lebar kain.

Penyelesaian:
Keliling = 2(panjang + lebar)
Maka

\[40 = p + l \text{ atau } p = 40 - l\]

Dengan demikian fungsi luasnya adalah

\[L(l) = p \times l = (40 - l)l = 40l - l^2\]

Karena yang diinginkan luas maksimum maka

\[l = \frac{-40}{2(-1)} = 20\]

Didapat

\[p = 40 - l = 40 - 20 = 20\]

5. Sebuah peluru ditembakan vertikal ke atas. Tinggi peluru \(h\) (dalam meter) sebagai fungsi waktu \(t\) (dalam detik) dirumuskan dengan \(h(t) = -4t^2 + 40t\). Tentukan tinggi maksimum yang dapat dicapai peluru dan waktu yang diperlukan.

Penyelesaian:
Waktu supaya tinggi maksimum adalah

\[t = \frac{-40}{2(-4)} = 5\]

Maka tinggi maksimum adalah

\[h(5) = -4(5^2) + 40(5) = -100 + 200 = 100\]

6. Diketahui bahwa tinggi Jam Gadang yang ada di Sumatera adalah 26 meter. Tentukan pemecahan masalah berikut ini: (Petunjuk: Rumus fisika untuk benda yang dijatuhkan pada ketinggian tertentu adalah \(s = s_0 - v_0 t + \frac{1}{2} g t^2\) dan untuk benda yang dilempar keatas adalah \(h = h_0 + v_0 t - \frac{1}{2} g t^2\) dengan \(s\) adalah jarak benda yang dijatuhkan terhadap posisi awal benda (meter), \(h\) adalah jarak benda yang dilempar terhadap posisi awal benda (meter), \(t\) adalah waktu (detik), \(s_0\) dan \(h_0\) adalah ketinggian awal, dan \(v_0\) adalah kecepatan awal benda (m/s))

Sumber: http://id.wikipedia.org
a. Pada suatu hari ada seseorang yang menjatuhkan apel dari atas gedung Jam Gadang. Jika diharapkan apel tiba di tanah pada 0,7 detik setelah pelemparan apel. Tentukan kecepatan awal apel.

Penyelesaian:

a. Gunakan persamaan \(s = s_0 - v_0t + 5t^2 \) dengan substitusi \(s_0 = \) tinggi jam gadang = 26, \(s = 0 \) dan \(t = 0,7 \) sehingga didapat

\[
0 = 26 - v_0(0,7) + 5(0,49)
\]

Dengan demikian

\[
v_0 = \frac{26 - 2,45}{0,7} = \frac{23,65}{0,7} = 33,7857
\]

b. Gunakan persamaan \(h = h_0 + v_0t - 5t^2 \) dengan substitusi \(h_0 = 0 \), dengan demikian tinggi maksimum adalah

\[
y_{\text{maksimum}} = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{(v_0)^2 - 4(-5)(0)}{4(-5)} = \frac{v_0^2}{20}
\]

Dan substitusi \(y_{\text{maksimum}} = 26 \) maka didapat

\[
v_0 = \pm \sqrt{520}
\]

Karena kecepatan harus bernilai positif maka

\[
v_0 = \sqrt{520}
\]

7. Seorang pemain bola basket mempunyai tinggi 170 cm. Sedangkan tinggi keranjang adalah 3 meter. Pemain basket tersebut melempar bola basket sejauh 4 meter dari posisi tiang keranjang dan posisi awal bola berada tepat di atas kepala pemain. Ternyata lemparannya mempunyai tinggi maksimum 4,5 meter dan secara horisontal berjarak 2,5 meter dari pemain. Jika lemparannya membentuk parabola tentukan apakah bola tersebut masuk kedalam keranjang?

Penyelesaian:

Misalkan fungsi kuadrat

\[
y = ax^2 + bx + c
\]
Misalkan koordinat bola awal adalah \((0, 1,70)\) yaitu 1,70 sebagai tinggi orangnya. Dengan demikian posisi dari keranjang adalah \((4, 3)\). Dan koordinat dari titik optimum adalah \(4 \frac{1}{2}, 2 \frac{1}{2}\). Maka didapata persamaan

\[
c = 1,7
\]

\[
- \frac{b}{2a} = 4 \frac{1}{2} \text{ atau } b = -9a
\]

\[
\frac{b^2 - 4ac}{4a} = 2 \frac{1}{2} \text{ atau } b^2 - 4ac = -10a
\]

Subtitusi persamaan (1) dan (2) ke (3) didapat

\[
81a^2 - 6,8a = -10a
\]

Sehingga didapat

\[
a = 0 \text{ atau } a = \frac{-32}{810}
\]

Karena berbentuk parabola maka \(a \neq 0\) sehingga \(a = \frac{-32}{810}\) dan \(b = \frac{32}{90}\) dengan demikian

\[
y = -\frac{32}{810}x^2 + \frac{32}{90}x + 1,7
\]

Kemudian lihat bahwa \(y(4) = \frac{-32}{810}(16)\) atau \(-\frac{32}{90}(4) + 1,7 \neq 3\) maka lemparan tersebut tidak akan masuk kedalam keranjang.

8. Seorang tukang bangunan mendapat pesanan membuat air mancur yang diletakkan dipusat kolam kecil yang berbentuk lingkaran. Pemesan menginginkan luas kolamnya adalah 10 m\(^2\). Jika tinggi maksimum dari air mancurnya adalah 2 meter dan air mancurnya harus jatuh tepat ditepian kolam maka tentukan persamaan kuadrat dari air mancur.

Penyelesaian:

Luas kolam adalah 10 maka \(r = \sqrt{\frac{10}{\pi}}\)

Misalkan fungsi kuadrat

\[y = ax^2 + bx + c\]
Misalkan koordinat tengah kolam adalah \((0,0)\) dan koordinat dari titik optimum adalah \(\left(\frac{10}{\sqrt{\pi}}, 2\right)\). Maka didapat persamaan

\[
c = 0
\]

\[
- \frac{b}{2a} = \frac{10}{\sqrt{\pi}} \quad \text{atau} \quad b = -\frac{10}{\sqrt{\pi}} \quad \text{a}
\]

\[
- \frac{b^2 - 4ac}{4a} = 2 \quad \text{atau} \quad b^2 - 4ac = -8a
\]

Subtitusi persamaan (1) dan (2) ke (3) didapat

\[
\frac{10}{\pi} a^2 = -8a
\]

Sehingga didapat

\[
a = 0 \text{ atau } a = -\frac{8\pi}{10}
\]

Karena berbentuk parabola maka \(a \neq 0\) sehingga \(a = -\frac{8\pi}{10}\) dan \(b = \frac{64\pi}{10}\) dengan demikian \(y = \frac{-8\pi}{10} x^2 + \frac{64\pi}{10} x\).

9. Seorang atlet lompat jauh sedang mengadakan latihan. Pada saat latihan dia mengambil awalan lari dengan kecepatan tertentu dan pada saat di balok tumpuan kecepatannya kira-kira 2.5 m/s kemudian pada saat itu juga dia melompat dengan sudut 30\(^0\). Tentukan jarak atlet tersebut dengan balok tumpuan ketika dia sampai ditanah? (Petunjuk: Rumus fisika untuk jarak vertikal (tinggi) yang bergantung terhadap waktu dengan sudut awal 30\(^0\) adalah \(h = \frac{1}{2} v_0 t - 5t^2\) dan jarak horizontal yang bergantung pada waktu adalah \(s = \frac{1}{2} \sqrt{3} v_0 t\) dengan \(t\) adalah waktu (detik), \(h\) adalah tinggi lompatan pada saat \(t\) (m), \(s\) adalah jarak horisontal pada saat \(t\) (m) dan \(v_0\) adalah kecepatan awal)

Sumber: http://elgisha.wordpress.com
Penyelesaian:
Pada saat orang tersebut di tanah maka
\[
\frac{1}{2} v_0 t - 5t^2 = 0
\]
Dengan demikian
\[t = 0 \text{ atau } t = 0,25 \]
Dengan demikian atlit tersebut sampai di tanah pada saat \(t = 0,25 \).
Sehingga
\[
s = \frac{1}{2} \sqrt{3} (2,5) 0,25 = 0.3125 \sqrt{3} \approx 0.5413
\]

10.
Seorang atlet lompat tinggi sedang mengadakan latihan. Pada saat latihan dia mengambil awalan lari dengan kecepatan tertentu dan dia melompat dengan sudut mendekati 90° pada saat jaraknya sangat dekat sekali dengan tiang lompat. Satu detik setelah dia melompat, tubuhnya mencapai tanah. Tentukan kecepatan lari sesaat sebelum dia melompat supaya lompatannya bisa melewati tinggi mistar lompat yaitu 2 meter! (Petunjuk: Rumus fisika untuk tinggi yang bergantung terhadap waktu dengan sudut awal lompatan mendekati 90° adalah \(h = \frac{1}{2} v_0 t - 5t^2 \) dengan \(t \) adalah waktu (detik), \(h \) adalah tinggi lompatan pada saat \(t \) (m) dan \(v_0 \) adalah kecepatan awal)

Penyelesaian:
Karena tinggi mistar lompat adalah 2 maka tinggi maksimum adalah \(h_{\text{max}} > 2 \) sehingga
\[
\frac{1}{2} v_0^2 > 2
\]
Atau bisa dituliskan
\[
v_0^2 > 160
\]
Dengan demikian kecepatan awalnya adalah
\[
v_0 > \sqrt{160}
\]
Mintalah siswa untuk mengerjakan proyek ini sebagai acuan seberapa jauh siswa memahami materi pada bab ini.

Ukurlah tinggi badanmu \((t)\) dan juga panjang jangkauan kedua tanganmu \((j)\). Nyatakan keduanya dalam satuan cm. Tugasmu adalah membuat fungsi kuadrat berdasarkan informasi tinggi dan jangkauan tangan tanganmu sebagai berikut:

1. Grafik fungsi kuadrat tersebut memiliki titik puncak pada koordinat \((0, h)\).
2. Grafik fungsi kuadrat tersebut memotong sumbu-X pada koordinat \(\left(\frac{j}{2}, 0\right)\) dan \(\left(-\frac{j}{2}, 0\right)\)

Ilustrasinya dapat dilihat pada gambar di bawah ini.

Sumber: Dokumen Kemdikbud
1. Gambarkan grafik fungsi kuadrat berikut
 a. \(f(x) = x^2 + x + 3 \)
 b. \(f(x) = x^2 - 6x + 8 \)
 c. \(f(x) = 2x^2 + 3x + 2 \)

2. Tentukan fungsi kuadrat yang grafiknya memotong sumbu-X pada titik koordinat (-2, 0) dan (5, 0) serta memotong sumbu-Y pada titik koordinat (0, -20).
 Penyelesaian: \(f(x) = 2x^2 - 6x - 20 \)

3. Tentukan fungsi kuadrat yang grafiknya memiliki titik puncak pada titik koordinat (1, 5) serta melalui titik koordinat (0, 7).
 Penyelesaian: \(f(x) = 2x^2 - 4x + 7 \)

4. Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat (0, 5), (1, 6), dan (-1, 12).
 Penyelesaian: \(f(x) = 4x^2 - 3x + 20 \)

5. Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat (0, -2) serta memiliki sumbu simetri \(x = -\frac{1}{2} \)
 Penyelesaian: \(f(x) = \frac{1}{3}x^2 + \frac{1}{3}x - 2 \)

6. Analisa kesalahan. Lily menentukan fungsi kuadrat yang memiliki akar \(x = 3 \) dan \(x = -2 \) serta grafiknya melalui titik koordinat (0, 12). Fungsi kuadrat yang diperoleh adalah \(y = -2x^2 - 2x + 12 \). Tentukan kesalahan yang dilakukan oleh Lily.
 Penyelesaian: Lily melakukan kesalahan menyatakan fungsi kuadrat menjadi
 \[y = -2(x + 3)(x - 2) \]
 yang benar adalah
 \[y = -2(x - 3)(x + 2) \]

7. Tantangan. Tentukan banyaknya fungsi kuadrat \(y = ax^2 + bx + c \) yang memiliki dua akar berbeda dengan \(1 \leq a, b, c \leq 6 \).
 Penyelesaian: Fungsi kuadrat \(y = ax^2 + bx + c \) memotong sumbu-X pada dua titik koordinat berbeda jika
 \[b^2 - 4ac \geq 0 \]
Untuk \(b = 1 \), diperoleh
\[1 - 4ac \geq 0 \rightarrow ac \leq \frac{1}{4} \]
Tidak ada nilai \(a \) dan \(c \) yang memenuhi.

Untuk \(b = 2 \), diperoleh
\[4 - 4ac \geq 0 \rightarrow ac \leq 1 \]
Pasangan \((a, c)\) yang memenuhi adalah \((1, 1)\). Terdapat 1 pasangan.

Untuk \(b = 3 \), diperoleh
\[9 - 4ac \geq 0 \rightarrow ac \leq \frac{9}{4} \]
Pasangan \((a, c)\) yang memenuhi adalah \((1, 1), (1, 2), (2, 1)\). Terdapat 3 pasangan.

Untuk \(b = 4 \), diperoleh
\[16 - 4ac \geq 0 \rightarrow ac \leq 4 \]
Pasangan \((a, c)\) yang memenuhi adalah \((1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1)\). Terdapat 7 pasangan.

Untuk \(b = 5 \), diperoleh
\[25 - 4ac \geq 0 \rightarrow ac \leq \frac{25}{4} \]
Pasangan \((a, c)\) yang memenuhi adalah \((1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1), (5, 1), (6, 1)\). Terdapat 14 pasangan.

Untuk \(b = 6 \), diperoleh
\[36 - 4ac \geq 0 \rightarrow ac \leq 9 \]
Pasangan \((a, c)\) yang memenuhi adalah \((1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1), (6, 1)\). Terdapat 17 pasangan.

Banyaknya fungsi kuadrat yang memenuhi adalah \(1 + 3 + 14 + 17 = 35\).

8. Tentukan titik potong grafik fungsi linear \(y = 2x + 5 \) dengan grafik fungsi kuadrat \(y = 2x^2 - 4x + 9 \).

Penyelesaian: Titik potong \(= (1, 7) \) dan \((2, 9) \)

9. Tentukan titik potong grafik fungsi kuadrat \(y = 2x^2 + 4x + 1 \) dengan grafik fungsi kuadrat \(y = x^2 + 9x + 7 \).

Penyelesaian: Titik potong \(= (-1, -1) \) dan \((6, 97) \)

10. Tantangan. Apakah mungkin garis horisontal memotong grafik fungsi kuadrat \(y = ax^2 + bx + c \) tepat pada satu titik koordinat?
Penyelesaian: Garis horisontal dapat memotong grafik fungsi kuadrat \(y = ax^2 + bx + c \) tepat pada satu titik koordinat yaitu titik puncak fungsi kuadrat tersebut.

11. Tentukan sumbu simetri dan nilai optimum dari grafik fungsi di bawah ini

 a. \(y = 3x^2 - 7x \)

 b. \(y = 8x^2 - 16x + 2 \)

 c. \(y = 6x^2 + 20x + 18 \)

Penyelesaian:

a. Sumbu simetrinya adalah \(x = \frac{-b}{2a} = \frac{-7}{2 \times 3} = \frac{7}{6} \)

 \[y_m = \frac{D}{4a} = \frac{b^2 - 4ac}{4a} = \frac{(-7)^2}{4(3)} = \frac{49}{12} \]

b. Sumbu simetrinya adalah \(x = \frac{-b}{2a} = \frac{-16}{2 \times 8} = 1 \)

 \[y_m = y(1) = 8 - 16 + 2 = -6 \]

c. Sumbu simetrinya adalah \(x = \frac{-b}{2a} = \frac{20}{2 \times 6} = \frac{20}{12} \)

 \[y_m = \frac{D}{4a} = \frac{b^2 - 4ac}{4a} = \frac{(20)^2 - 4(6)(18)}{4(6)} = \frac{400 - 432}{-24} = \frac{32}{24} \]

12. Sketsalah grafik fungsi berikut ini

 a. \(y = 6x^2 + 5x + 7 \)

 b. \(y = 7x^2 - 3x + 2 \)

13. Diketahui suatu barisan 3, 11, 26, Suku ke-\(n \) dari barisan tersebut dapat dihitung dengan rumus \(U_n = an^2 + bn + c \). Tentukan barisan ke 100.

Penyelesaian:

Bentuk suatu persamaan dari barisan di atas yaitu \(U_i = ai^2 + bi + c \) didapat persamaan

\[a + b + c = 3 \]
\[4a + 2a + c = 11 \]
\[9a + 3b + c = 26 \]

Sehingga didapat \(U_i = 3 \cdot \frac{1}{2} i^2 - \frac{1}{2} i + 2 \) dengan demikian suku ke-100 adalah \(U_{100} = 34.752 \)
14. Diketahui suatu barisan barisan 5, 19, 29, … . Suku ke-\(n \) dari barisan tersebut dapat dihitung dengan rumus \(U_n = an^2 + bn + c \). Tentukan nilai maksimum dari barisan tersebut.

Penyelesaian:

Bentuk suatu persamaan dari barisan di atas yaitu \(U_i = ai^2 + bi + c \) didapat persamaan

\[
\begin{align*}
 a + b + c &= 5 \\
 4a + 2a + c &= 19 \\
 9a + 3b + c &= 29
\end{align*}
\]

Sehingga didapat \(U_i = -2i^2 + 20i - 13 \) dengan demikian nilai maksimumnya adalah

\[
y_m = -\frac{D}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{(20)^2 - 4(-2)(-13)}{4(-2)} = \frac{400 - 104}{8} = \frac{396}{8} = 49.5
\]

15. Jika fungsi \(y = ax^2 + 3x + 5a \) mempunyai nilai maksimum 0, maka tentukan \(a \).

Penyelesaian:

\[
0 = -\frac{(3)^2 - 4(a)(5a)}{4(a)}
\]

Maka

\[
0 = 9 - 20a^2
\]

Didapat

\[
a = \pm \frac{9}{\sqrt{20}}
\]

16. Seorang sopir mengemudikan mobilnya dengan kecepatan konstan 20 m/s. Tiba-tiba dia melihat orang yang sedang berdiri ditengah jalan yang berjarak 15 m depan mobilnya kemudian dia mengerem mobilnya dengan perlambatan 5 m/s². Apakah mobil tersebut menabrak orang di depannya itu? (Petunjuk : rumus fisika untuk kasus ini adalah \(s = v_0 \frac{t}{2} - \frac{1}{2} at^2 \) dengan \(t \) menyatakan waktu (detik) mulai dari pengereman, \(s \) jarak tempuh pada saat \(t \), \(v_0 \) menyatakan kecepatan mobil dan \(a \) menyatakan perlambatan mobil)

Sumber: Dokumen Kemdikbud
Penyelesaian:

Persamaan jaraknya didapat

\[s = 20t - \frac{5}{2}t^2 \]

Mobil tersebut berhenti pada saat jarak maksimum. Sehingga mobil berhenti pada saat jaraknya adalah

\[\text{jarak} = -\left(\frac{(20)^2}{4\left(\frac{5}{2}\right)}\right) = \frac{400}{10} = 40 \text{ meter} \]

Sehingga mobil tersebut menabrak orang tersebut.

17. Air Terjun Madakaripura terletak di Kecamatan Lumbang, Probolinggo merupakan salah satu air terjun di kawasan Taman Nasional Bromo Tengger Semeru. Tinggi dari air terjun ini adalah 200 m. Pada suatu hari ada seseorang yang melepas ikan tepat dari atas air terjun. Tentukan berapa waktu yang diperlukan ikan tersebut untuk mencapai dasar air terjun? Jika persamaan jarak tempuh dari ikan tersebut adalah \(y = y_0 - 24t^2 \) dengan \(y \) jarak tempuh, \(y_0 \) adalah tinggi air terjun dan \(t \) waktu tempuh.

Penyelesaian:

Maka waktu tempuhnya adalah

\[0 = 200 - 24t^2 \]

Sehingga

\[t = \pm\sqrt{\frac{200}{24}} \text{ detik} \]

Karena waktunya bernilai tak negatif maka

\[t = \sqrt{\frac{200}{24}} \text{ detik} \]
18. Sebuah roket mempunyai dua bahan bakar, yaitu salah satunya berada pada bagian ekor. Pada ketinggian tertentu bahan bakar ini akan dibuang untuk mengurangi bobot. Suatu roket mempunyai rumus suatu persamaan \(y = 300t - 5t^2 \) dengan \(t \) adalah waktu (detik) dan \(y \) menyatakan tinggi roket. Jika ekor roket dibuang pada saat mencapai tinggi maksimum, tentukan tinggi roket pada saat membuang bahan bakarnya?

Penyelesaian:

Tinggi roket pada saat membuang bahan bakar adalah

\[
y'_{\text{buang}} = \frac{D}{4a} = \frac{b^2 - 4ac}{4a} = \frac{(300)^2 - 4(-5)(0)}{4(-5)} = \frac{90.000}{20} = 4.500
\]

19. Seorang atlet tolak peluru mempunyai tinggi 160 cm. Atlit ini melempar peluru tepat di atas kepala. Ternyata lemparannya mempunyai tinggi maksimum 4,5 meter dan secara horisontal berjarak 2,5 meter dari pemain. Jika lemparannya membentuk parabola tentukan jarak yang dicapai peluru tersebut!

Penyelesaian:

Misalkan fungsi kuadrat

\[
y = ax^2 + bx + c
\]

Misalkan koordinat bola peluru adalah (0,1.60) yaitu 1,60 sebagai tinggi orangnya. Dan koordinat dari titik optimum adalah (4 1/2,2 1/2). Maka didapata persamaan

\[
c = 1,6 \ldots \ldots (1)
\]

\[
-\frac{b}{2a} = 4 \frac{1}{2} \quad \text{atau} \quad b = -9a \ldots \ldots (2)
\]

\[
-\frac{b^2 - 4ac}{4a} = 2 \frac{1}{2} \quad \text{atau} \quad b^2 - 4ac = -10a \ldots \ldots (3)
\]

Subtitusi persamaan (1) dan (2) ke (3) didapat

\[
81a^2 - 6,4a = -10a
\]
Sehingga didapat

\[a = 0 \text{ atau } a = \frac{-36}{810} \]

Karena berbentuk parabola maka \(a \neq 0 \) sehingga \(a = \frac{-36}{810} \) dan \(b = \frac{36}{90} \) dengan demikian \(y = \frac{-36}{810} x^2 + \frac{36}{90} x + 1,6 \). Ketika bola peluru mencapai tanah maka \(y \) haruslah bernilai nol sehingga untuk menentukan jarak lempar harus diselesaikan persamaan

\[\frac{-36}{810} x^2 + \frac{36}{90} x + 1,6 = 0 \]

Didapatkan

\[x = -3 \text{ atau } x = 12 \]

Karena \(x \) menyatakan jarak maka jarak lemparannya adalah 12.

20. Balon udara jatuh dari ketinggian 19 kaki. Diberikan fungsi \(h = -32 t^2 + 32 \) dengan \(h \) adalah tinggi balon setelah \(t \) detik. Kapan balon ini mencapai tanah?

Penyelesaian:

Balon udara mencapai tanah pada saat \(h = 0 \) sehingga

\[-32t^2 + 32 = 0 \]

atau

\[t = \pm 1 \]

karena waktu bernilai tak negatif maka

\[t = 1. \]
1. Tentukan fungsi kuadrat yang grafiknya memiliki titik puncak pada titik koordinat (1, 2) serta melalui titik koordinat (0, 9).
 Penyelesaian:
 \[f(x) = 2x^2 - 4x + 9 \]

2. Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat (0, 6), (1, 7) dan (-1, 13).
 Penyelesaian:
 \[f(x) = 4x^2 - 3x + 21 \]

3. Tentukan fungsi kuadrat yang grafiknya melalui titik koordinat (0, 2) dan (2, 4) serta memiliki sumbu simetri \(x = -\frac{1}{2} \)
 Penyelesaian:
 \[f(x) = \frac{1}{3}x^2 + \frac{1}{3}x + 2 \]

4. Jika fungsi \(y = ax^2 + 3x + 5a \) mempunyai nilai maksimum 4, maka tentukan \(a \).
 Penyelesaian:
 \[
 1 = \frac{(3)^2 - 4(a)(5a)}{4(a)}
 \]
 Maka
 \[4 = 9 - 20a^2 \]
 Didapat
 \[a = \pm \frac{1}{2} \]

5. Balon udara jatuh dari ketinggian 19 kaki. Diberikan fungsi \(h = -32t^2 + 128 \) dengan \(h \) adalah tinggi balon setelah \(t \) detik. Kapan balon ini mencapai tanah?
 Penyelesaian:
 Balon udara mencapai tanah pada saat \(h = 0 \) sehingga
 \[-32t^2 + 128 = 0 \]
 atau
 \[t = \pm 2 \]
 karena waktu bernilai tak negatif maka
 \[t = 2. \]
A. Petunjuk Pelaksanaan Penilaian

Setiap bab terdapat uji kompetensi yang berisi soal-soal atau penugasan projek, produk, unjuk kerja. Unsur-unsur penilaian dalam buku petunjuk guru adalah

1. Penilaian kompetensi pengetahuan

Untuk menilai kompetensi pengetahuan yang dimiliki siswa, maka setiap akhir sub bab atau bab buku ini, guru sebaiknya menguji kemampuan siswa dengan memberikan tes atau non tes atau penugasan berupa soal-soal yang tersedia pada uji kompetensi yang tersedia pada setiap bab buku ini. Untuk penentuan skor yang diperoleh siswa, guru harus mengembangkan pedoman penskoran atau rubrik penilaian. Sebagai contoh teknik tes untuk dipedomani guru, disajikan sebagai berikut.

Contoh Penilaian Tes Tulis

Satuan Pendidikan : SMP
Mata Pelajaran : Matematika
Kelas : IX
Kompetensi dasar : 4.5 Menyelesaikan permasalahan nyata hasil pengamatan yang terkait penerapan kekongruenan dan kesebangunan
Indikator : Siswa dapat menggunakan konsep kesebangunan segitiga untuk menentukan panjang sisi yang belum diketahui
Materi : Kekongruenan dan kesebangunan
Soal

1. Perhatikan gambar.

Segitiga ABC adalah segitiga siku-siku sama kaki. Jika $AB = 10$ cm dan garis bagi sudut C CD, Tentukan panjang BD.

2. Pada gambar di bawah ini, tinggi tongkat PQ sesungguhnya adalah 4 m dan panjang bayangannya 15 m. Jika panjang bayangan pohon adalah 30 m, tentukan tinggi pohon.
Contoh Rubrik Penilaian Tes Tulis

<table>
<thead>
<tr>
<th>No</th>
<th>Kunci jawaban</th>
<th>Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Diketahui: Segitiga ABC adalah segitiga siku-siku sama kaki. Jika $AB = 10$ cm dan CD garis bagi sudut C.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ditanya: panjang BD.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\triangle ABC$ siku-siku samakaki ($m \angle ABC = 90^\circ$) dan $AB = 10$ cm, maka $BC = AB = 10$ cm, dan $AC = \sqrt{10^2 + 10^2} = 10\sqrt{2}$ cm, $m \angle BCA = m \angle BAC = 45^\circ$, dan $AC = 10\sqrt{2}$ cm.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Berdasarkan kriteria sudut – sudut - sisi, $\triangle CBD \cong \triangle CED$ karena $DC = DC$ (berhipmit), $m \angle BCD = m \angle ECD$ (diketahui), dan $m \angle DBC = m \angle DEC = 90^\circ$ (diketahui). Akibatnya, $BD = ED$ dan $CE = BC = 10$ cm.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Perhatikan $\triangle DAE$ $m \angle DAE = m \angle BAC = 45^\circ$ (berhipmit), $m \angle DEA = 90^\circ$ (karena pelurusnya $\angle CED = 90^\circ$) maka $m \angle ADE = 45^\circ$ $\triangle DAE$ adalah segitiga siku-siku samakaki Sehingga, $ED = AE = AC – CE = 10 \sqrt{2} – 10 = 10(\sqrt{2} – 1)$ cm.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Jadi $BD = ED = 10(\sqrt{2} – 1)$ cm.</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Diketahui: $PQ = 4$ m $OQ = 15$ m $OR = 30$ m</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ditanya: tinggi pohon (SR)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$\triangle PQQ \sim \triangle SRO$ karena $m \angle POQ = m \angle SOR$ (berhipmit) dan $m \angle PQO = m \angle SRO$ (siku-siku) perbandingan sisi-sisi yang bersesuaian: $\frac{PQ}{SR} = \frac{OQ}{OR}$</td>
<td>2</td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccc}
\frac{4}{SR} &=& \frac{15}{30} \\
SR &=& \frac{4 \times 30}{15} = 8
\end{array}
\]

Jadi, tinggi pohon kira-kira adalah 12 m.

Skor maksimal

\[\text{Nilai} = \frac{\text{Skor Perolehan}}{\text{Skor Maksimal}} \times 100\]

Contoh Penilaian Tugas Produk

Satuan Pendidikan : SMP
Mata Pelajaran : Matematika
Kelas : IX
Kompetensi dasar : 4.5 Menyelesaikan permasalahan nyata hasil pengamatan yang terkait penerapan kekongruenan dan keseimbunan
Indikator : Siswa dapat membuat alat memperbesar gambar yang menggunakan konsep keseimbunan dua segitiga (pantograf)
Materi : Kekongruenan dan keseimbunan

Soal
Bersama temanmu, buatlah pantograf buatan kelompokmu yang bisa menghasilkan salinan gambar \(k \) kali lebih besar (boleh \(k = 2, 3, 4, 5 \) atau lebih). Dokumentasikan prosesnya. Gunakan pantograf tersebut untuk membuat salinan gambar yang diperbesar. Presentasikan pantograf hasil karya kelompokmu tersebut.

Contoh gambar pantograf

Contoh Rubrik Penilaian Tugas Produk

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produk (hasil kerja) sesuai dengan konsep dan prinsip matematika; Kerja kreatif; Produk (hasil kerja) asli; Diselesaikan tepat waktu; Kerapian sangat baik.</td>
<td>4</td>
</tr>
<tr>
<td>Produk (hasil kerja) sesuai dengan konsep dan prinsip matematika; Kerja kurang kreatif; Produk (hasil kerja) asli; Diselesaikan tidak tepat waktu; Kerapian cukup baik.</td>
<td>3</td>
</tr>
</tbody>
</table>
Buku Guru Kelas IX SMP/MTs

- Produk (hasil kerja) sesuai dengan konsep dan prinsip matematika;
- Kerja tidak kreatif;
- Produk (hasil kerja) asli;
- Diselesaikan tidak tepat waktu;
- Kerapian kurang baik.

Produk (hasil kerja) sesuai dengan konsep dan prinsip matematika;
- Kerja tidak kreatif;
- Produk (hasil kerja) tidak asli buatan sendiri
- Diselesaikan tidak tepat waktu;
- Kerapian tidak baik;
Tidak melakukan tugas produk

<table>
<thead>
<tr>
<th>No.</th>
<th>Kriteria</th>
<th>Skor Maksimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Penilaian kompetensi keterampilan</td>
<td>100</td>
</tr>
</tbody>
</table>

Untuk mengetahui kompetensi keterampilan siswa, guru melakukan 3 teknik penilaian, yaitu: (1) tes unjuk kerja, (2) penilaian projek, (3) penilaian portofolio. Setiap akhir bab buku ini guru harus melaksanakan salah satu dari tiga jenis penilaian tersebut untuk mengukur keterampilan matematik siswa. Di bagian ini diberi contoh penilaian unjuk kerja dan penilaian projek beserta rubrik penilaiannya yang dapat dipedomani guru.

Contoh Penilaian Unjuk Kerja
Satuan Pendidikan : SMP
Mata Pelajaran : Matematika
Kelas : IX
Kompetensi dasar : 4.5 Menyelesaikan permasalahan nyata hasil pengamatan yang terkait penerapan kekongruenan dan kesebangunan
Indikator : Siswa dapat membagi suatu sudut menjadi dua sama besar dengan menggunakan konsep kekongruenan atau kesebangunan
Materi : Kekongruenan dan kesebangunan

Rekapitulasi Skor Perolehan Tugas Produk

<table>
<thead>
<tr>
<th>No.</th>
<th>Kriteria</th>
<th>Kelompok</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kesesuaian dengan konsep dan prinsip matematika</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>2</td>
<td>Kreativitas</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Keaslian produk</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ketepatan waktu</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kerapian</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Skor Perolehan</td>
<td></td>
</tr>
</tbody>
</table>

Skor Perolehan = \(\frac{\text{Nilai}}{\text{Skor Maksimal}} \times 100 \)

Skor maksimal = 5 x 4 = 20
Soal
Gambarlah sebuah sudut dan beri nama \(\angle ABC \), kemudian
a. Dengan menggunakan jangka, bagilah \(\angle ABC \) tersebut menjadi dua sama besar.
b. Gambarlah lagi \(\angle ABC \) yang sama, kemudian tanpa menggunakan jangka maupun busur derajat, bagilah \(\angle ABC \) tersebut menjadi dua sama besar. *(petunjuk: gunakan konsep segitiga kongruen)*

Contoh Rubrik Penilaian Unjuk Kerja

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jawaban menunjukkan pengetahuan matematika mendasar yang berhubungan</td>
<td>4</td>
</tr>
<tr>
<td>dengan tugas ini dengan baik.</td>
<td></td>
</tr>
<tr>
<td>Ciri-ciri:</td>
<td></td>
</tr>
<tr>
<td>• Semua prosedur atau langkah dilakukan dengan benar dan jawaban/hasil</td>
<td></td>
</tr>
<tr>
<td>yang benar.</td>
<td></td>
</tr>
<tr>
<td>• Kerapian baik.</td>
<td></td>
</tr>
<tr>
<td>Jawaban menunjukkan pengetahuan matematika mendasar yang berhubungan</td>
<td>3</td>
</tr>
<tr>
<td>dengan tugas ini dengan cukup baik.</td>
<td></td>
</tr>
<tr>
<td>Ciri-ciri:</td>
<td></td>
</tr>
<tr>
<td>• Semua prosedur atau langkah dilakukan dengan benar. tetapi ada cara</td>
<td></td>
</tr>
<tr>
<td>yang tidak sesuai atau ada satu jawaban/hasil yang belum tepat.</td>
<td></td>
</tr>
<tr>
<td>• Kerapian cukup baik.</td>
<td></td>
</tr>
<tr>
<td>Jawaban menunjukkan keterbutasan atau kurangnya pengetahuan matematika</td>
<td>2</td>
</tr>
<tr>
<td>yang berhubungan dengan tugas ini.</td>
<td></td>
</tr>
<tr>
<td>Ciri-ciri:</td>
<td></td>
</tr>
<tr>
<td>• Sebagian besar prosedur atau langkah dilakukan dengan benar tetapi</td>
<td></td>
</tr>
<tr>
<td>jawaban/hasil belum selesai.</td>
<td></td>
</tr>
<tr>
<td>• Kerapian kurang baik.</td>
<td></td>
</tr>
<tr>
<td>Jawaban menunjukkan sedikit atau sama sekali tidak ada pengetahuan</td>
<td>1</td>
</tr>
<tr>
<td>matematika yang berhubungan dengan tugas ini.</td>
<td></td>
</tr>
<tr>
<td>Ciri-ciri:</td>
<td></td>
</tr>
<tr>
<td>• Prosedur atau langkah dilakukan dengan kurang tepat dan jawaban/hasil</td>
<td></td>
</tr>
<tr>
<td>belum selesai.</td>
<td></td>
</tr>
</tbody>
</table>

Contoh penyelesaian:
Gambarlah sebuah sudut dan beri nama \(\angle ABC \), kemudian
a. Dengan menggunakan jangka, bagilah \(\angle ABC \) tersebut menjadi dua sama besar.

Penyelesaian:
Gunakan teknik membagi sudut menjadi dua bagian dengan jangka seperti langkah di bawah ini: (perhatikan gambar)
1. Buat busur lingkaran dengan pusat titik \(B \), sehingga memotong kaki sudut \(AB \) di titik \(D \) dan memotong kaki sudut \(BC \) di titik \(E \).
2. Buat lagi 2 buah busur lingkaran masing-masing dengan pusat di titik \(D \) dan \(E \). Perpotongan kedua busur lingkaran tersebut beri nama titik \(G \).
3. Tarik garis dari titik \(B \) ke \(G \), sehingga \(m \angle ABG = \angle CBG \).
b. Gambarlah lagi ★ABC yang sama, kemudian tanpa menggunakan jangka maupun busur derajat, bagilah ★ABC tersebut menjadi dua sama besar. (*petunjuk: gunakan konsep segitiga kongruen*)

Penyelesaian:
1. Gambarlah garis \(AD \) yang sejajar dengan \(BC \).
2. Gambarlah garis \(CD \) yang sejajar dengan \(BA \). Sehingga terbentuk bangun jajargenjang \(ABCD \).
3. Tarik garis dari titik \(B \) ke \(D \) (diagonal jajargenjang \(ABCD \)). Jelas bahwa \(\triangle ABD \cong \triangle CBD \) dengan \(m\angle ABD = \angle CBD \).

Perolehan Skor Penilaian Unjuk Kerja

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Skor Perolehan</th>
<th>Bobot</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendekatan pemecahan masalah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Prosedur dan sistematika pemecahan masalah</td>
<td>X 4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>• Bentuk penyelesaian masalah</td>
<td>X</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Ketepatan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ketepatan penggunaan konsep</td>
<td>X 4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>• Kebenaran hasil yang diperoleh</td>
<td>X</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Gambar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ketepatan gambar sebagai interpretasi masalah</td>
<td>X 2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>• Kesesuaian gambar dalam pemecahan masalah</td>
<td>X 2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>• Kerapian dan penyajian</td>
<td>X</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penjelasan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Kejelasan uraian jawaban</td>
<td>X 1,5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>• Pemahaman terhadap aspek hubungan</td>
<td>X</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Nilai yang diperoleh</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Misalkan Ahmad memperoleh skor seperti pada kolom skor perolehan

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Skor Perolehan</th>
<th>Bobot</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendekatan pemecahan masalah</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Prosedur dan sistematika pemecahan masalah</td>
<td>X 4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>• Bentuk penyelesaian masalah</td>
<td>X</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Ketepatan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ketepatan penggunaan konsep</td>
<td>X 4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>• Kebenaran hasil yang diperoleh</td>
<td>X</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Gambar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ketepatan gambar sebagai interpretasi masalah</td>
<td>X 2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>• Kesesuaian gambar dalam pemecahan masalah</td>
<td>X 2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>• Kerapian dan penyajian</td>
<td>X</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Jadi nilai akhir Ahmad adalah 84.

Contoh Penilaian Tugas Projek

- **Jenjang**: SMP
- **Mata Pelajaran**: Matematika
- **Kelas**: IX
- **Kompetensi dasar**: 4.5 Menyelesaikan permasalahan nyata hasil pengamatan yang terkait penerapan kekongruenan dan kesebangunan
- **Indikator**: Siswa dapat mengerapkan konsep kesebangunan dan kekongruenan dalam kehidupan nyata.
- **Materi**: Kekongruenan dan kesebangunan

Soal Tugas Projek

Coba carilah gedung, pohon, tiang listri atau tiang bendera yang ada di sekitar sekolahmu (pilih salah satu atau lebih). Bersama temanmar,

- a. Buat strategi untuk memperkirakan tinggi gedung, pohon, tiang listri atau tiang bendera tersebut dengan menggunakan konsep kesebangunan dua segitiga. (dengan dua strategi yang berbeda).
- b. Berdasarkan strategi yang kamu buat, perkirakan berapa gedung, pohon, tiang listrik atau tiang bendera tersebut?
- c. Dokumentasikan kerja kelompokmu dan presentasikan hasil kerja kelompokmu di kelas.

Contoh Rubrik Penilaian Projek

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menunjukkan kreativitas yang tinggi dalam pemecahan masalah;</td>
<td>4</td>
</tr>
<tr>
<td>Kejelasan atau keterangan jawaban sangat lengkap;</td>
<td></td>
</tr>
<tr>
<td>Kebenaran jawaban masalah sangat tepat;</td>
<td></td>
</tr>
<tr>
<td>Kerjasama kelompok sangat baik;</td>
<td></td>
</tr>
<tr>
<td>Interpretasi jawaban masalah/gambar sangat akurat;</td>
<td></td>
</tr>
<tr>
<td>Penggunaan strategi benar dan tepat;</td>
<td></td>
</tr>
<tr>
<td>Kerapian sangat baik;</td>
<td></td>
</tr>
<tr>
<td>Laporan disusun dengan baik dan lengkap;</td>
<td></td>
</tr>
<tr>
<td>Kemampuan komunikasi dalam presentase hasil kerja baik;</td>
<td></td>
</tr>
<tr>
<td>Menunjukkan kreativitas yang cukup dalam pemecahan masalah;</td>
<td>3</td>
</tr>
<tr>
<td>Kejelasan atau keterangan jawaban cukup lengkap;</td>
<td></td>
</tr>
<tr>
<td>Kebenaran jawaban masalah cukup tepat;</td>
<td></td>
</tr>
<tr>
<td>Kerjasama kelompok cukup baik;</td>
<td></td>
</tr>
<tr>
<td>Interpretasi jawaban masalah/gambar cukup akurat;</td>
<td></td>
</tr>
<tr>
<td>Penggunaan strategi benar dan tepat;</td>
<td></td>
</tr>
<tr>
<td>Kerapian cukup baik;</td>
<td></td>
</tr>
<tr>
<td>Laporan disusun dengan cukup baik dan kurang lengkap;</td>
<td></td>
</tr>
<tr>
<td>Kemampuan komunikasi dalam presentase hasil kerja baik;</td>
<td></td>
</tr>
</tbody>
</table>
- Menunjukkan kreativitas yang rendah dalam pemecahan masalah;
- Kejelasan atau keterangat jawaban cukup lengkap;
- Kebenaran jawaban masalah cukup tepat;
- Kerjasama kelompok cukup baik;
- Interpretasi jawaban masalah/gambar kurang akurat;
- Penggunaan strategi benar dan tepat;
- Kerapian kurang baik;

<table>
<thead>
<tr>
<th>No. Kriteria Kelompok</th>
<th>Skor Perolehan</th>
<th>Kelompok</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kreativitas</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2. Kejelasan atau keterangan jawaban engkap</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3. Kebenaran jawaban</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4. Kerjasama dengan sesama anggota kelompok</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5. Keakuratan interpretasi jawaban/gambar</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6. Penggunaan strategi benar dan tepat</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>7. Kerapian</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Skor Perolehan</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Skor maksimal = 7 x 4 = 28

Perolehan Skor Penilaian Projek

<table>
<thead>
<tr>
<th>No.</th>
<th>Kriteria Kelompok</th>
<th>Kelompok</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Nilai = \[
\frac{\text{Skor Perolehan}}{\text{Skor Maksimal}} \times 100
\]

3. Penilaian kompetensi sikap

Penilaian kompetensi sikap dilakukan pada saat berlangsungnya proses belajar mengajar. Instrumen penilaiannya dapat berupa:

- a. Lembar observasi
- b. Lembar penilaian diri (self assessment)
- c. Angket untuk penilaian antar peserta didik (peer assessment)
- d. Jurnal

Seluruh instrumen yang dibuat, harus dilengkapi dengan pedoman penskoran atau rubrik penilaian. Berikut berbagai contoh instrumen penilaian sikap.
KUESIONER
SIKAP SISWA TERHADAP
KOMPONEN DAN KEGIATAN PEMBELAJARAN

Nama Sekolah : Kelas/Semester :
Mata Pelajaran : Hari/tanggal :
Materi : Nama :

A. TUJUAN
Tujuan penggunaan kuesioner ini adalah untuk menjaring data sikap siswa terhadap kegiatan dan komponen pembelajaran dalam pelaksanaan pembelajaran matematika.

B. PETUNJUK
Beri tanda cek (✓) pada kolom yang sesuai menurut pendapatmu.

<table>
<thead>
<tr>
<th>No.</th>
<th>Aspek</th>
<th>Senang</th>
<th>Tidak Senang</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Bagaimana sikapmu terhadap komponen berikut?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Materi pelajaran</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Buku Siswa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Lembar Kerja Siswa (LKS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d. Suasana belajar di kelas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e. Cara guru mengajar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Berikan alasan secara singkat atas jawaban yang diberikan!

II	Bagaimana pendapatmu terhadap komponen berikut?		
	a. Materi pelajaran		
	b. Buku Siswa		
	c. Lembar Kerja Siswa (LKS)		
	d. Suasana belajar di kelas		
	e. Cara guru mengajar		

Berikan alasan secara singkat atas jawaban yang diberikan!
<table>
<thead>
<tr>
<th>III</th>
<th>Apakah siswa berminat mengikuti kegiatan belajar selanjutnya seperti yang telah siswa ikuti sekarang?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bermanfaat</td>
</tr>
<tr>
<td></td>
<td>..................</td>
</tr>
</tbody>
</table>

Berikan alasan secara singkat atas jawaban yang diberikan!

<table>
<thead>
<tr>
<th>IV</th>
<th>Bagaimana pendapatmu terhadap aktivitas belajar matematika di kelas dan di luar kelas?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a. Apakah anda merasa terbebani terhadap tugas yang diberikan guru?</td>
</tr>
<tr>
<td></td>
<td>b. Aktivitas belajar matematika menurut saya adalah menarik.</td>
</tr>
<tr>
<td></td>
<td>Ya</td>
</tr>
<tr>
<td></td>
<td>..................</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>Bagaimana menurut pendapatmu, apakah matematika bermanfaat dalam kehidupan?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bermanfaat</td>
</tr>
<tr>
<td></td>
<td>..................</td>
</tr>
</tbody>
</table>

Rubrik Penilaian Sikap

<table>
<thead>
<tr>
<th>Kriteria</th>
<th>Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siswa memberikan respon senang dan baru terhadap komponen pembelajaran matematika, berminat, tertarik dan tidak merasa terbebani terhadap tugas dan aktivitas belajar matematika, tetapi merasakan kebermanfaatan belajar matematika.</td>
<td>4</td>
</tr>
</tbody>
</table>

| Siswa memberikan respon senang dan baru terhadap komponen pembelajaran matematika, berminat, tertarik dan tidak merasa terbebani terhadap tugas dan aktivitas belajar matematika, tetapi tidak merasakan kebermanfaatan belajar matematika. | 3 |
Siswa memberikan respon senang dan baru terhadap komponen pembelajaran matematika tetapi tidak berminat, tidak tertarik dan merasa terbebani terhadap tugas dan aktivitas belajar matematika, serta tidak merasakan kebermanfaatan belajar matematika.

<table>
<thead>
<tr>
<th>Nilai</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Siswa memberikan respon senang terhadap komponen pembelajaran matematika, tidak berminat, tidak tertarik dan merasa terbebani terhadap tugas dan aktivitas belajar matematika, serta tidak merasakan kebermanfaatan belajar matematika.</td>
</tr>
<tr>
<td>1</td>
<td>Siswa memberikan respon tidak senang terhadap komponen pembelajaran matematika, tidak berminat, tidak tertarik dan merasa terbebani tidak merasakan kebermanfaatan.</td>
</tr>
</tbody>
</table>

Contoh Penilaian Diri

PENILAIAN DIRI DALA KELOMPOK

SELF-ASSESSMENT IN GROUP

<table>
<thead>
<tr>
<th>Nama</th>
<th>: ..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anggota Kelompok</td>
<td>: ..</td>
</tr>
<tr>
<td>Kegiatan Kelompok</td>
<td>: ..</td>
</tr>
</tbody>
</table>

Untuk pertanyaan 1 sampai dengan 5 tulis masing-masing huruf sesuai dengan pendapatmu

- A = Selalu
- B = Jarang
- C = Jarang Sekali
- D = Tidak pernah

1. ____Selama diskusi saya memberikan saran kepada kelompok untuk didiskusikan.
2. ____Ketika Kami berdiskusi, setiap anggota memberikan masukan untuk didiskusikan.
3. ____Semua anggota kelompok harus melakukan sesuatu dalam kegiatan kelompok.
4. ____Setiap anggota kelompok mengerjakan kegiatannya sendiri dalam kegiatan kelompok.

Selama kegiatan, saya

- ____Mendengarkan
- ____Bertanya
- ____Merancang gagasan

5. Selama kegiatan kelompok, tugas apa yang siswa lakukan?
LEMBAR PENILAIAN PARTISIPASI

Nama : __
Kelas : __
Hari/Tanggal : __

Siswa telah mengikuti pelajaran matematika hari ini. Ingatlah kembali bagaimana partisipasi siswa dalam kelas matematika hari ini.

Jawablah pertanyaan berikut sejurusnya:
- Apakah siswa berpartisipasi dalam diskusi?
- Apakah siswa telah mempersiapkan diri sebelum masuk kelas, atau telah mengerjakan PR, sehingga siswa dapat menjawab pertanyaan di kelas?
- Apakah siswa bertanya ketika siswa tidak paham?
- Jika ada teman bertanya (kepada guru/kepadamu/kepada teman lain), apakah siswa menyimaknya?

Berikan skor atas partisipasi siswa, menurut ketentuan berikut ini.
- Jika siswa menjawab “ya” pada semua pertanyaan di atas, bagus …, siswa telah melakukan partisipasi yang sempurna. Berikan nilai untuk dirimu 5.
- Jika siswa menjawab “ya” pada tiga pertanyaan di atas, berikan nilai untuk dirimu 4.
- Jika siswa menjawab “ya” pada dua pertanyaan di atas, berikan nilai untuk dirimu 3.
- Jika siswa hanya menjawab “ya” paling banyak pada satu pertanyaan di atas berikan nilai untuk dirimu 2, dan upayakan untuk meningkatkan partisipasimu dalam pelajaran matematika.

Nilai partisipasi saya hari ini adalah : ____________.

Tanda tangan ____________________________.

Lembar Partisipasi

(Lembar ini diisi setiap jam belajar matematika)
Tulislah dengan jujur, partisipasi anda dalam belajar matematika di kelas hari ini.

Partisipasi yang dimaksud adalah:
- Bertanya kepada teman di dalam kelas.
- Bertanya kepada guru di dalam kelas.
Menyelesaikan tugas belajar dalam kelompok.
Mempresentasikan hasil kerja di depan kelas.
Menawarkan ide/menjawab pertanyaan teman di dalam kelas.
Menawarkan ide/menjawab pertanyaan guru di dalam kelas.
Membantu teman dalam belajar.

Pertanyaan utama yang harus dijawab pada tabel berikut adalah:
Partisipasi apa yang siswa lakukan dalam belajar Matematika hari ini?

<table>
<thead>
<tr>
<th>Hari/Tanggal</th>
<th>Partisipasi apa yang siswa lakukan?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contoh Pengolahan Laporan Pencapaian Kompetensi Matematika

a. Pengelolaan Skor Kompetensi Pengetahuan

Setelah pelaksanaan uji kompetensi pengetahuan matematika melalui tes dan penugasan dengan contoh instrumen dan pedoman penskoran yang telah disajikan di atas maka diperoleh skor. Dari beberapa kali pemberian tes dan penugasan dalam mengukur kompetensi pengetahuan, perlu pengelolaan skor untuk laporan pencapaian kompetensi. Berikut contoh untuk dipedomani guru.

<table>
<thead>
<tr>
<th>KD</th>
<th>Skor</th>
<th>Skor Akhir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tes</td>
<td>Penugasan</td>
</tr>
<tr>
<td>3.1</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>3.2</td>
<td>76</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>84</td>
<td>87</td>
</tr>
</tbody>
</table>

Rata-Rata Skor Akhir 3.22

Cara konvensi ke skala 1-4 adalah

\[
\frac{\text{Skor yang diperoleh}}{\text{Skor maksimal}} \times 4 = \text{Skor akhir}
\]
b. Pengelolaan Skor kompetensi Keterampilan

Setelah pelaksanaan uji kompetensi keterampilan matematika melalui penilaian unjuk kerja, proyek, dan portofolio dengan contoh instrumen dan rubrik yang telah disajikan di atas maka diperoleh skor. Dari beberapa kali pemberian tes dan penugasan dalam mengukur kompetensi pengetahuan, perlu pengelolaan skor untuk laporan pencapaian kompetensi. Berikut contoh untuk dipedomani guru.

<table>
<thead>
<tr>
<th>KD</th>
<th>Skor</th>
<th>Skor Akhir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tes Praktik</td>
<td>Projek</td>
</tr>
<tr>
<td>4.1</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>76</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>65</td>
<td>60</td>
</tr>
</tbody>
</table>

Rata-Rata Skor Akhir: 3.09

Cara konversi ke skala 1-4 adalah:

\[
\text{Skor yang diperoleh} \times \frac{4}{\text{Skor maksimal}} = \text{Skor akhir}
\]

Petunjuk

1. Penilaian setiap mata pelajaran meliputi kompetensi pengetahuan, kompetensi keterampilan, dan kompetensi sikap.

2. Kompetensi pengetahuan dan kompetensi keterampilan menggunakan skala 1–4 (kelipatan 0.33), sedangkan kompetensi sikap menggunakan skala Sangat Baik (SB), Baik (B), Cukup (C), dan Kurang (K), yang dapat dikonversi ke dalam predikat A - D seperti pada tabel di bawah ini.

<table>
<thead>
<tr>
<th>Predikat</th>
<th>Nilai Kompetensi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pengetahuan</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>A-</td>
<td>3,66</td>
</tr>
<tr>
<td>B+</td>
<td>3,33</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>B-</td>
<td>2,66</td>
</tr>
</tbody>
</table>
3. Ketuntasan minimal untuk seluruh kompetensi dasar pada kompetensi pengetahuan dan kompetensi keterampilan yaitu 2,66 (B-).

4. Pencapaian minimal untuk kompetensi sikap adalah B. Untuk kompetensi yang belum tuntas, kompetensi tersebut dituntaskan melalui pembelajaran remedial sebelum melanjutkan pada kompetensi berikutnya. Untuk mata pelajaran yang belum tuntas pada semester berjalan, dituntaskan melalui pembelajaran remedial sebelum memasuki semester berikutnya.

B. Petunjuk Pelaksanaan Remedial dan Pengayaan

Kurikulum Matematika 2013 adalah kurikulum berbasis kompetensi dengan pendekatan pembelajaran tuntas. Pembelajaran tuntas (mastery learning) dalam proses pembelajaran berbasis kompetensi dimaksudkan adalah pendekatan dalam pembelajaran yang mempersyaratkan peserta didik menguasai secara tuntas seluruh kompetensi dasar pokok bahasan atau mata pelajaran tertentu. Peserta didik dikatakan menguasai secara tuntas seluruh kompetensi dasar pada pokok bahasan atau mata pelajaran matematika pada kelas tertentu, apabila peserta didik tersebut memperoleh hasil penilaian/ujı kompetensi lebih besar atau sama dengan dari Ketuntasan Belajar (≥ KB) yang ditetapkan dalam kurikulum. Sebaliknya peserta didik dikatakan tidak tuntas.

Bagi peserta didik yang memperoleh hasil penilaian/ujı kompetensi pada pokok bahasan mata pelajaran matematika kurang dari KB, wajib diberi pembelajaran remedial. Pembelajaran remedial pada hakikatnya adalah pemberian bantuan bagi peserta didik yang mengalami kesulitan atau kelambatan belajar. Bantuan dalam pembelajaran remedial mencakup (1) pengkajian ulang materi pada kompetensi dasar yang belum dicapai peserta didik, (2) pemberian tugas terstruktur yang dilakukan secara mandiri dan pemberian feedback atas hasil kerja peserta didik, (3) tutor sebayaa dalam implementasi model pembelajaran koperatif tipe jigsaw, dan (4) kerjasama sekolah dengan orang tua/wali peserta didik mengatasi masalah belajar peserta didik. Pemberian pembelajaran remedial meliputi dua langkah pokok, yaitu pertama mendiagnosis kesulitan belajar dan kedua memberikan perlakuan (treatment) pembelajaran remedial.

Bagi peserta didik yang memperoleh hasil penilaian/ujı kompetensi pada pokok bahasan mata pelajaran matematika kurang dari KKM, wajib diberi pembelajaran pengayaan. Pembelajaran pengayaan adalah pembelajaran yang memberikan pengalaman (membangun berpikir tingkat tinggi, yaitu berpikir kritis dan kreatif) lebih mendalamati materi terkait kompetensi atau kegiatan peserta didik yang melampaui persyaratan minimal yang ditentukan oleh kurikulum dan tidak semua peserta didik dapat melakukannya. Pendekatan pembelajaran yang diterapkan dalam pelaksanaan pengayaan melalui (1) pembelajaran berbasis masalah dan
proyek untuk melatih peserta didik berpikir kritis dan kreatif, ketangguhan diri beradaptasi dan memecahkan masalah, (2) pemberian asesmen portofolio tambahan berbasis masalah, proyek, keterampilan proses, chek up diri dan asesmen kerjasama kelompok, dan (3) pemanfaatan IT dan ICT dalam proses pembelajaran.

Seluruh hasil belajar siswa yang tampak pada hasil penilaian/uji kompetensi dan asesmen otentik/portofolio dijadikan bahan kajian guru, guru konseling, dan kepala sekolah. Hasil belajar tersebut dilaporkan kepada pemangku kepentingan (terutama pada orang tua) setiap bulannya.

Secara garis besar, alur utama pelaksanaan pembelajaran remedial dan pengayaan disajikan pada skema berikut.

![Gambar: Alur Utama Pelaksanaan Remedial dan Pengayaan](image-url)
DAFTAR PUSTAKA

Suwarsono, 2006, Matematika Sekolah Menengah Pertama, Widya Utama.

Sumber-sumber dari internet:
www.studentcalculators.co.uk/acatalog/Scientific_Calculators.html
http://food.detik.com/read/2011/05/18/055315/1641317/312/menghaluskan-biskuit
www.kereta-api.co.id/#!prettyPhoto, diunduh tanggal 26 Juni 2014.
http://2.bp.blogspot.com/-tOgoISLgRkY/UaOX9hp7PaI/AAAAAAAAB8/1AUF7py22uxY/s1600/Balon-Udara.jpg, diunduh tanggal 4 Agustus 2014.
Glosarium

Bangun ruang | Objek yang memiliki dimensi panjang, lebar, tinggi. Misalnya prisma, limas, kubus.
Bangun ruang sisi lengkung | Bangun ruang yang memiliki sisi lengkung. Misalnya tabung, kerucut dan bola.
Barisan bilangan | Susunan bilangan yang membentuk suatu pola atau aturan tertentu.
Bidang koordinat | Bidang yang dibentuk oleh sumbu horizontal dan sumbu vertikal, seringkali sumbu-\(X\) untuk garis horizontal dan sumbu-\(Y\) untuk garis vertical; terdiri atas kuadran 1 sampai 4 yang ditandai dengan angka romawi I, II, III, dan IV.
Busur | Busur : Kurva lengkung yang berimpit dengan suatu lingkaran.
Data | Informasi yang dikumpulkan. Data biasanya dalam bentuk bilangan, dikumpulkan dalam bentuk tabel, diolah dalam bentuk diagram.
Deret bilangan | Penjumlahan dari suku-suku pada barisan bilangan.
Diagram batang | Gambar yang menggunakan batang secara horizontal atau vertikal untuk menunjukkan suatu data.
Diagram garis | Grafik yang menggunakan segmen garis untuk menunjukkan perubahan data.
Diagram lingkaran | Bagan lingkaran dengan membagi luas lingkaran oleh juring yang mewakili suatu data; jumlah data pada setiap juring harus 100%.
Diagram pohon | Diagram yang menunjukkan hasil yang mungkin dalam suatu eksperimen (peluang teoritik).
Diameter | Segmen garis pada lingkaran yang melalui pusat lingkaran.
Grafik | Representasi visual yang digunakan untuk menunjukkan hubungan numerik.
Fungsi | Pemetaan setiap anggota sebuah himpunan (dinamakan sebagai domain) kepada angota himpunan yang lain (dinamakan sebagai kodomain)
Jarak | Angka yang menunjukkan seberapa jauh suatu benda berupa posisi melalui suatu lintasan tertentu.
Jari-jari | Ruas garis yang ditarik dari pusat lingkaran ke sebarang titik pada lingkaran; sama dengan setengah diameter.
Jaring-jaring | Perpaduan beberapa polygon yang dapat dibuat bangun ruang.
Kecerdasan | Bagian dari ruang sampel.
Keliling lingkaran | Panjang kurva lengkung tertutup yang berimpit pada suatu lingkaran.
<table>
<thead>
<tr>
<th>Konstanta</th>
<th>Lambang yang mewakili suatu nilai tertentu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koordinat</td>
<td>Pasangan terurut suatu bilangan yang digunakan untuk menentukan titik pada bidang koordinat, ditulis ((x, y)).</td>
</tr>
<tr>
<td>Kuadran</td>
<td>Satu dari empat bagian bidang koordinat yang dipisahkan oleh sumbu-(X) dan sumbu-(Y). Kuadran diberi nama Kuadran I, II, III, dan IV yang dimulai dari bagian kanan atas erlawanan arah jam.</td>
</tr>
<tr>
<td>Luas permukaan</td>
<td>Jumlah luas semua sisi-sisi pada bangun ruang.</td>
</tr>
<tr>
<td>Mean</td>
<td>Nilai rata-rata dari kumpulan data</td>
</tr>
<tr>
<td>Median</td>
<td>Nilai/data yang terletak ditengah setelah kumpulan data tersebut diurutkan dari yang kecil hingga terbesar.</td>
</tr>
<tr>
<td>Modus</td>
<td>Nilai/data yang paling sering muncul pada sekumpulan data.</td>
</tr>
<tr>
<td>Persamaan garis lurus</td>
<td>Pernyataan matematika yang menyatakan dua ekspresi aljabar adalah sama. Pernyataan yang berisi tanda sama dengan (=). Misalnya (y = ax + b); dinyatakan oleh garis lurus pada bidang koordinat.</td>
</tr>
<tr>
<td>Persamaan linear dua variabel</td>
<td>Kalimat matematika yang dinyatakan dalam bentuk (ax + by = c), dengan (a, b \neq 0).</td>
</tr>
<tr>
<td>Pola</td>
<td>Sebuah susunan yang mempunyai bentuk yang teratur dari bentuk yang satu ke bentuk berikutnya.</td>
</tr>
<tr>
<td>Ruang sampel</td>
<td>Himpunan semua hasil yang mungkin diperoleh pada suatu percobaan.</td>
</tr>
<tr>
<td>Suku</td>
<td>Setiap anggota bilangan dari suatu barisan bilangan.</td>
</tr>
<tr>
<td>Sumbu</td>
<td>Garis horizontal atau vertikal dalam sistem koordinat.</td>
</tr>
<tr>
<td>Sumbu-(X)</td>
<td>Garis bilangan horizontal pada bidang koordinat.</td>
</tr>
<tr>
<td>Sumbu-(Y)</td>
<td>Garis bilangan vertikal pada bidang koordinat.</td>
</tr>
<tr>
<td>Teorema Phytagoras</td>
<td>Hubungan matematis yang menyatakan bahwa dalam segitiga siku-siku jumlah kuadrat dari panjang dua sisi sama dengan kuadrat sisi miringnya (hipotenusa); jika (a) dan (b) adalah panjang dua sisi segitiga siku-siku dan (c) adalah panjang sisi miring (hipotenusa), maka (a^2 + b^2 = c^2).</td>
</tr>
<tr>
<td>Titik asal</td>
<td>Titik pada bidang koordinat yang merupakan titik potong sumbu-(X) dan sumbu-(Y); berkoordinat ((0, 0)).</td>
</tr>
<tr>
<td>Variabel</td>
<td>Simbol yang mewakili suatu bilangan dalam suatu bentuk aljabar, misal (2n + 4), variabelnya adalah (n).</td>
</tr>
<tr>
<td></td>
<td>Simbol yang digunakan untuk menyatakan nilai yang tidak diketahui dalam suatu persamaan. Misal (a + 3 = 6), variabelnya adalah (a).</td>
</tr>
<tr>
<td></td>
<td>Simbol yang digunakan untuk menyatakan suatu bilangan atau anggota himpunan pasangan terurut. Misal (y = x + 3), variabelnya adalah (x) dan (y).</td>
</tr>
<tr>
<td>Volume</td>
<td>Perhitungan seberapa banyak ruang yang bisa ditempati dalam suatu objek.</td>
</tr>
</tbody>
</table>